COMET beamline and facility

Satoshi MIHARA

Outline

- COMET physics
- COMET facility & detector
- COMET beam & monitors
- Summary

COMET physics

Charged Lepton Flavor in SM

- Precise measurement of charged lepton behavior contributed to establish the SM
- No observation of "exotic decay mode"
 - Concept of Generation (Flavor)
- Lepton flavor transition is strictly forbidden
- Neutrino Oscillation has been observed
 - ν oscillation + SM

Role of low-energy charged lepton physics in LHC/ILC era

Direct search
 (Energy Frontier)

 Indirect search (Intensity Frontier)

- LHC, ILC
 - Higher energy for heavier new particle

- Charged LFV/g $_{\mu}$ -2
 - $L = L_{SM} + L_{BSM}$
 - "Slight" difference from SM prediction

New Physics Search in Lepton Flavor

· SM+ ν mass+New physics contribution

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda_{LNV}} \mathcal{O}^{\dim -5} + \frac{1}{\Lambda_{LFV}^2} \mathcal{O}^{\dim -6} + \cdots.$$
A: scale of
$$\mathcal{O}^{\dim -5} = (g_{\nu})^{ij} (\bar{L}^i \tilde{H}) (\tilde{H}^{\dagger} L^j)^c + h.c.$$

$$\mathcal{O}^{\dim -5} = (g_{\nu})^{ij} (\bar{L}^i \tilde{H}) (\tilde{H}^{\dagger} L^j)^c + h.c.$$

$$\mathsf{cLFV} (\mu \to \mathbf{e}\gamma, \mu \to \mathbf{eee}, \mu \to \mathbf{e} \text{ conversion})$$

$$\mathcal{O}^{\dim -6} \ni \bar{\mu}_R \sigma^{\mu\nu} H \ e_L F_{\mu\nu}, \quad (\bar{\mu}_L \gamma^{\mu} e_L) (\bar{f}_L \gamma^{\mu} f_L), \quad (\bar{\mu}_R e_L) (\bar{f}_R f_L)$$

Λ> O(10⁵) TeV

MEG limit Br($\mu \rightarrow e \gamma$)<5.7x10⁻¹³

cLFV & new physics

$\mu \rightarrow$ e search using pulsed muon beam

μ -e conversion with different Z

Even without $\mu \rightarrow e \gamma$ signal

CIRIGLIANO, KITANO, OKADA, AND TUZON PHYSICAL REVIEW D 80, 013002 (2009)

くとした 大学共同利用機関法人 高エネルギー加速器研究

COMET facility & detector

COMET at J-PARC

-11

- J-PARC pulsed proton beam to produce pulsed muon beam
 - 8GeV, 3kW-56kW
 - Beam extinction factor study
 - 30GeV w/o extraction, Rext < 1.5x10
- 32m long chain of SC solenoid magnets
 - pion collection (PS)
 - muon transport (TS)
 - muon focusing on the stopping target (ST)
 - electron momentum selection (SS)
 - electron spectrometer (DS)

h=9 4 filled and 5 empty

• Electron spectrometer

h=2

Bucket B

IT solenoidal field, Multi-layer straw tube tracker, crystal calorimeter
 Bucket A
 Bucket A</l

J-PARC Facility (KEK/JAEA)

Neutrino beam to Kamioka

LINAC 181 MeV → 400 MeV

Rapid Cycle Synchrotron Energy : 3 GeV Repetition : 25 Hz

Nuclear and Particle Physics Exp. Hall

Material and Li

Facility

Main Ring Max Energy : 30 GeV Design Power for FX : 0.75 MW Expected Power for SX : > 0.1

Hadron Hall & COMET Facility

COMET Hall & Beamline

Branch for COMET and high-p is realized by normal dipole magnets. (No simultaneous operation of COMET and other hadron-hall experiments)

05/Feb/2014

COMET Phase I & II

Phase I 2013-2015 Facility construction 2013-2016 Magnet construction & installation 2016 Eng. run & Physics run Phase II Eng. run in 2020(?)

104MeV/c

105.5

Momentum [MeV/c]

105

104.5

104

COMET Phase I Setup

Muon Beam and Stopping Target

- Search for muon conversion in muonic aluminum (different material in future)
- Stop as many muons as possible on target disks
 - Correct (only) low momentum pion/muon and transport to the experiment setup
 - Stop muons on Al disks
 - Diam.: 100 mm
 - Thickness: 100 μm
 - Number of disks: 17

Why CDC (CyDet) in Phase I?

- Why CyDet?
- No curved solenoid to select momentum and charge is available in phase I
- No beam particle hits the detector in CyDet geometry

COMET Phase I Detector Design

• CDC

- Belle II CDC design
 - He-based low mass gas mixture
- large inner bore with a 0.5mm thick
 CFRP inner wall
 - proton emission from muon captures
- construction starts in JFY 2013 in parallel to prototype study
- Cherenkov Trigger counter
 - segmented
 - SiPM readout
- Collimator/target disk optimization as well

muon target

CDC Design and R&D

prototype

Belle II CDC technologyAll stereo layers

•He based low mass gas

·large inner bore with a $0.5\,\mu$ m thick CFRP inner wall

Cosmic Ray Veto Counter

- Cosmic-ray veto counter production based on the technology developed for the Belle II muon system
 - Efficient rejection is mandatory for COMET
 - Necessary to cover the detector solenoid
 - Scintillator bars with WLS fibers ready by SiPM
- Infrastructure for the Belle II system will be reused for COMET

Sensitivity & background in Phase I

Sensitivity

- Acceptance=0.056
- 0.20 (geometrical) x 0.80(mom. sel.) x 0.39 (timing sel.) x 0.90 (trigger)
- Atomic capture rate f_{cap}=0.6
- N_µ=9.4x10¹⁵ muons
 (83days)
- S.E.S.= 3.2×10^{-15} , 90% U.L. = 7.2×10^{-15}

• Background

Background	estimated events
Muon decay in orbit	0.01
Radiative muon capture	1.38×10^{-4}
Neutron emission after muon capture	< 0.001
Charged particle emission after muon capture	< 0.001
Beam electrons (prompt)	7.5×10^{-3}
Beam electrons (delayed)	~ 0
Muon decay in flight (prompt)	$< 1.9 \times 10^{-4}$
Muon decay in flight (delayed)	~ 0
Pion decay in flight (prompt)	$< 2.2 \times 10^{-3}$
Pion decay in flight (delayed)	~ 0
Neutron induced background	$\sim 0^*$
Radiative pion capture (prompt)	$1.4 imes 10^{-3}$
Radiative pion capture (delayed)	1.1×10^{-2}
Anti-proton induced backgrounds	0.007
Electrons from cosmic ray muons	< 0.0001
Total	0.0285

- Intrinsic & beam related
 - Measured in Phase I
 - Straw & Ecal for Beam related BG study

COMET beam

Proton Beam

Beam Optics (TRANSPORT)

Beam size at 8 GeV is estimated by 3.5-times emittance at 30 GeV beam.

Beam Shift for Lambertson Magnet

Beam shift of 53 mm was achieved at the entrance of the Lambertson magnet. (with beam loss of 0.36%)

y position (± 2a) (cm)

→ Beam shift at A-line operation can be ~30mm. We obtained 83mm shift in total between

COMET operation and A-line operation (76mm required)

COMET Beam Parameters (proton)

- Phase I beam intensity 3.2kW
- Acceleration (in MR)
 - ¹²
 3.8x10 protons / backet, 1.5 x 10 protons in total in one Acc cycle
- After extraction
 - 12
 - 2.5 x 10 protons/sec (normalized)
 - 6 sec repetition period, 2.93 beam on, pulsed

Beam Extinction

$$N_{bg} = NP \times R_{ext} \times Y_{\pi}/P \times A_{\pi} \times P_{\gamma} \times A$$

NP : total # of protons (~10²¹) R_{ext} : Extinction Ratio (10⁻⁹) Y_{π}/P : π yield per proton (0.015) A_{π} : π acceptance (1.5 x 10⁻⁶) P_{γ} : Probability of γ from π (3.5x10⁻⁵) A : detector acceptance (0.18)

COMET Beam Parameters (muon)

- 5x10⁻⁴ muons / proton on target
- 2.5×10^4 muons/sec , 1.5×10^3 muons / pulse
- Same time structure with protons in principle
- More electrons and pions

Monitors using Silicon Detector

- Proton monitor
 - Beam intensity monitor
 - Profile monitor
 - Extinction monitor, spill by spill or pulse by pulse (Switching?)
- Muon monitor
 - Profile monitor
 - Extinction monitor, spill by spill or pulse by puse (Switching?)
 - (Active target -> Kyushu & Wilfrid's presentation tomorrow)

Beam Monitor Location

q32out (profile, intensity) COMET profile and intensity

By Toyoda-san

Beam Monitor : RGIPM / RGICM

RGIPM : Residual Gas Ionization Profile Monitor RGICM : Residual Gas Ionization Current Monitor

Readout ionized electrons (profile / current) from beam interaction with residual gas

Both horizontal and vertical beam profile are measured.

Stability of degree of vacuum is important for precise measurement.

Summary

- COMET Phase I starts in 2016-2017
- Facility and detector constructions in progress
- Accelerator study dedicated for COMET will startein 2014
- Proton beam monitor / Muon beam monitor
 - Spill-by-spill or bunch-by-bunch Extinction level monitor
 - Any idea / proposal is welcome