

LCG-France Tier-1

Status and Plans

Fabio Hernandez
IN2P3/CNRS Computing Centre - Lyon
fabio@in2p3.fr

2nd LCG-France Workshop Clermont, March 13th-14th 2007

Contents

- Activities and contribution during 2006
- Plans for 2007
- Conclusions
- Questions

Contribution

- Revised planned contribution of LCG-France Tier-1
 - % of required resources for all tier-1s in 2008 (experiment's requirements as of March 2007)

Source: Comparison of New Requirements with Current Pledges - 24/10/2006

Contribution (cont.)

- Revised planned contribution of LCG-France tier-1
 - % of required resources in all tier-1s in 2008

Planned Evolution

Increase rate over the period 2006-2010:

CPU: x 17 DISK: x 16 MSS: x 18

Site overview (current status)

Site overview (cont.)

 Operating also several grid services for non-LHC VOs

		alice	atlas	cms	lhcb	auvergrid	biomed	calice	cdf	dteam	dzero	egeode	embrace	esr	hone	ilc	sdo	virgo
	CE	✓	✓	✓	✓		✓	✓	✓	✓	✓	✓		✓	✓	✓	✓	✓
	dCache/SRM SE	✓	✓	✓	✓					✓							✓	
မွ	Classic SE	✓	✓	✓	✓		✓			✓	✓	✓		✓	✓	✓	✓	✓
Ξ̈́	Local LFC	✓	✓	✓	✓													
Sel	VO Box	✓	✓	✓	✓				✓									
Grid Service	FTS	✓	✓	✓	✓													
ō	Central LFC						✓											
	RLS/RMC						✓											
	VOMS					✓	✓					✓	✓					

Contribution in 2006

- CPU time contributed by the LCG-France tier-1 in 2006
 - % of CPU time (grid and non-grid) used by the experiments in all the tier-1s

The CC-IN2P3 contribution to the global effort in 2006 was 10% of the total CPU used by the 4 experiments in all the tier-1s.

Contribution in 2006 (cont.)

 CPU utilisation by LHC experiments at all the tier-1s and at CC-IN2P3

All Tier-1s (does not include non-grid usage of some sites)

CC-IN2P3 (grid and non-grid)

Source: http://www3.egee.cesga.es/gridsite/accounting/CESGA/tier1_view.html

Grid vs. non-grid usage

- Site usage (grid vs. non-grid) greatly varies from one experiment to another
 - Both in terms of consumed capacity and number of jobs

Efficiency (CPU time vs. wallclock)

CPU planned vs. actual consumption

Observed Experiment Activity at the Site

LHC experiments CPU activity vs. time

F. Hernandez

NOTE: Y axis scale is not the same in all plots

13

Delivered CPU capacity

Several service interruptions in August and September due to incidents with the cooling or power infrastructure

4 days-long scheduled complete shutdown of the site for replacing some central electric and cooling equipement

CPU capacity - allocation

Allocated CPU Capacity

December 2006

■ LHC Experiments ■ Other Experiments

CPU capacity - consumption

- CPU time consumed by LHC experiments
 - % of consumed CPU time by all experiments at CC-IN2P3

■ Other Experiments ■ LHC Experiments

Delivered Storage

- Disk storage capacity
 - Delivered 34% (180 TB out of 520 TB planned)
 - More on this later
- Tape storage capacity
 - Installed capacity (as planned) of 535 TB (of which 73% was actually used)

Data transfer exercises

CERN → CC-IN2P3 (disk)

April 2006

CERN → CC-IN2P3 (MSS)

April 2006

Target: 75 MB/sec

LCG

Data transfer exercises (cont.)

- ATLAS: data transfer tests from Tier-1 to linked Tier-2s
 - July 7th 2006

Data transfer exercises (cont.)

BAD

ATLAS

DDM Functional Test 2006. Summary Table

	Tier-1	Tier-2s	Se	pt 06	Od	et 06	Nov 06		
	ASGC	IPAS, Uni Melbourne		Failed within the		Failed for Melbourn		T1-T1 not testd	
	BNL	GLT2, NET2,MWT2,SET2, WT2		cloud done		done		2+GB & DPM	
	CNAF	LNF,Milano,Napoli,Roma1		65% failure		done			
	F7K	CSCS, CYF, DESY-ZN, DESY-HH, FZU, WUP		Failed from %		dCache		T1-T1	
	LYON	BEIIJING, CPPM, LAPP, LPC, LPHNE, SACLAY, TOKYO		done 2		done, FTS conn		not testa	
	NG			tested		=<_6 tested		net tested	
	PIC	IFAE, IFIC, UAM		Failed within the		done		100104	
	RAL	CAM, EDINBOURGH, GLASGOW, LANCS, MANC, QMUL		cloud Failed within the		Failed for Edinbrg .		done	
	SARA	IHEP, ITEP, SINP		cloud Failed		IHEP not tested		IHEP in progress	
	TRIUMF	ALBERTA, TORONTO, UniMontreal, SFU, UVIC		Failed within the		Failed		T1-T1 not testd	

ATLAS SW week

Dec 11. 2006. A.Klimentöv

OK

Eric Lançon, Comité de Direction

5 février

F. Hernandez 20

4 / 3 >

Data transfer exercises (cont.)

févri S France 5 O Direction O Comité Charlot, Claude

LCG

Data transfer exercises

Ressources – stockage et transferts

• Sep-Nov 2006, test FTS, $T0 \rightarrow 5 T1s$

2007 février 2 CG-France Direction de Comité Yves Schutz,

Site availability

IN2P3-CC

av.reliability last 3 mths

target (90% of MoU) last 3 month averages: all sites

65%

F. Hernandez 23

Source: http://lcg.web.cern.ch/LCG/MB/availability/site_reliability.pdf

Computing capacity increase in 2006

CPU

- +265 worker nodes (IBM, dualprocessor dual-core AMD Opteron 275, 2.2 GHz, 2 GB/core, 290 GB internal disk)
- Theoretical power: 1573
 SI2000 per core
 - Total: 1,6 M SI2000
 - Observed power with typical applications is ~30% less than theoretical

Disk storage

 +400 TB of rack-mounted Sun Fire X4500 (aka Thumper)

Computing capacity increase in 2006 (cont.)

Tape storage

- Call for tender for a new cartridge library
- Selected Sun/StorageTek SL8500
 - 10.000 slots (500 GB cartridges)
 - 30 T10000 drives
 - 10 LTO-3 drives
 - Will progressively replace the current one
- Installation started: expected to be finished by end of April 2007

Computing capacity increase in 2006 (cont.)

Databases

- Reconfiguration of Oracle cluster
 - Extensible hardware architecture
- +1 TB added to the dedicated SAN (2 TB total)
- +3 front-end database servers (5 total)
 - 2 of them will share the load of the LHC experiments
- International connectivity
 - Dedicated link CC-IN2P3 ← CERN 10 Gbps

2 x 1 Gbps links CC-IN2P3 ↔ Fermilab

Hardware procurement

- Procurement process (evaluation, publication, selection) is more or less under control
 - Delivery delays are not!
 - In 2006, we suffered delivery delays of several months for some equipment
- Procurement of equipment is an issue
 - Several constraints: space in the machine room, budget constraints, delivery delays, requested availability, ...

Courtesy of Dominique Boutigny

Facility Upgrade

- Major effort for upgrading the electric and cooling infrastructure of the site
 - Currently reaching the limits of the installation
 - When the current works will be finished (April 2007)
 - from 500 kW to 1000 kW usable for computing equipment

Facility Upgrade (cont.)

Infrastructure (2)

CC-IN2P3 average electrical power in kW

An important work is going on in order to upgrade the computer room

- Electrical distribution
- Cooling
- Uninterruptible Power Supply
- → Up to ~1.6 MW of computing equipment + cooling (1 MW for computing equipment)
- The exponential increase of the computing resources has a significant impact on the computing centre infrastructure

Courtesy of Dominique Boutigny

Facility Upgrade (cont.)

- Scheduled 4 days-long complete shutdown of the site in December 2006 for replacing central electric equipment
 - Vital services (network equipment, mail servers, web servers, Oracle, FTS, LFCs, VOMS,...) were kept alive by ad hoc means)
 - Extensive use of virtual machines
 - Others services have been switched to partner sites
 - CIC Portal was hosted by CNAF during the shutdown and switched back to CC-IN2P3 afterwards
 - Failover procedure tested in real conditions

31

LCG

Site Operation

Batch operations

- Passing the LCG job requirements to the local batch scheduler is still necessary
 - Turnaround implemented to modify individual job requirements (memory and CPU) while it is in the BQS queue
 - Set to less than 2 GB for LHCb and more than 2 GB for CMS (in some cases)
- Redefinition of maximum CPU time for some BQS queues to better fit the demand
- Modification of the built-in BQS job monitoring mechanism to detect (and stop the execution of) pathological jobs
 - So not to block selected users while they do some testing (with pilot jobs, for instance)
- Temporary solution for implementing priorities within the same VO based on the VOMS role
 - Tested with Atlas jobs. An equivalent solution will be put in place for CMS
- Increase the usage of the BQS taging of jobs capability
 - For instance, for tagging the jobs requesting dCache so that when dCache (or HPSS) is not available, those jobs are not put in execution
 - Feature also used to regulate the execution of jobs with the same tag

LCG

- Batch operations (cont.)
 - Improvements to BQS planned for 2007
 - Priority handling between jobs within the same VO and between grid and non-grid jobs
 - Associate the whole user's proxy to job information (in addition to just the proxy's subject) and other grid-related attributes of the job (i.e. grid name, grid job id, ...)
 - Use the user's proxy as a criterion for scheduling
 - For instance to prevent execution of a particular user's jobs
 - Currently developing the BQS interface for gLite CREAM computing element
 - Expected to test it by the end of 2007Q1
 - Thanks to Massimo Sgaravatto for his support
 - Many difficulties encountered with the gLite CE interface (reported to the <u>TCG on 01/11/2006</u>)

- Grid services operations
 - Storage Element
 - Stabilizing the SRM-based SE service since the deployment of dCache/SRM v1.7 has been extremely difficult
 - Current service is not yet as stable as with previous release

Traffic into and out of dCache since september 2006

- Grid services operations (cont.)
 - Storage Element (cont.)
 - Service unstability and unavailability severely impacted experiments during late november and december 2006
 - In spite of the efforts deployed by the dCache/SRM developers for finding the roots of the problem
 - Detailed report done by Lionel Schwarz during the <u>dCache workshop</u> in January 2007
 - IMHO, the real issue is how to test, in near real load conditions, a key component such as dCache/SRM before putting a new release in production?

- Continuous effort to develop/adapt/deploy tools for easing the operations of the various grid services
 - Monitoring of FTS activity per channel, dCache activity and dCache errors
 - the ultimate goal is that the operations of the grid services be handled as the operations of the « traditional » services

LCG

Site Operation (cont.)

Site Operation (cont.)

Grid services

- Target availability of the tier-1 sites require that the grid services be designed and implemented with this goal in mind
 - Redundancy in the services must be possible without the need of current « gymnastics »
- We need to improve the manageability of the grid services
 - Standard interfaces for administering, (remotely) controling, monitoring their activity and standard locations for logs and traces would help a lot in this direction

Alice

PDC06: conclusions

- En 2006 les ressources CPU fournies par LCG-France (T1 & T2s) sont à peu-près celles déclarées dans le MoU LCG
- Ces ressources sont insuffisantes
- Les ressources pour le stockage de données n'ont pas été utilisées du fait de l'absence de SE
- Les tests de transfert T0 → CC ont atteint les taux requis, mais la stabilité du service reste insatisfaisante
- Pas de tests de transfert CC ↔ T2s
- Depuis le début de l'année, le suivi des opérations au CC est problématique, en l'absence d'un contact sur place.

5 fevrier 2007

ALICE@LCG-France

39

Comité Yves Schutz

Atlas

Conclusion provisoire

- Le Tier-1 influence l'efficacité des Tier-2 mais pas toujours
 - Problèmes récurrents de srm au CC
- Chaque Tier-2 a des problèmes spécifiques
- Il faut améliorer :
 - Le monitoring,
 - Plus de checks systématiques,
 - L'implication des sites,
 - Les relations avec les sites
- Cependant...
 - L'efficacité du nuage français est reconnu!

Eric Lançon,

05-fevrier-2007

Eric Lancon

20

Plans for 2007

Facility Upgrade

- Project scheduled to be finished by June 2007
 - 3 additional UPS
 - New diesel power generator
 - Additional power distribution equipment in the machine room
 - Additional cooling equipment
- Let's cross our fingers!

Connectivity

 Increase network bandwidth with tier-2s and backup link to other tier-1s through

FZK

Courtesy of Jérôme Bernier

Connectivity (cont.)

Network bandwidth requirements

Summary by experiment

Experiment	Number of Sites	Input		Output	
		Average Bandwidth [MB/sec]	Peak Bandwidth [MB/sec]	Average Bandwidth [MB/sec]	Peak Bandwidth [MB/sec]
Alice	14	30,7	40,7	22,3	29,5
Atlas	17	373,8	522,4	251,6	359,8
CMS	36	132,7	132,7	174,2	404,2
LHCb	9	28,4	28,4	31,8	31,8
	Total	565,6	724,2	479,9	825,3

Network bandwidth requirements (cont.)

Summary by tier level

Tier-1	Number of Sites	Input		Output	
		Average Bandwidth [MB/sec]	Peak Bandwidth [MB/sec]	Average Bandwidth [MB/sec]	Peak Bandwidth [MB/sec]
Tier-0	1	157,0	157,0		
Tier-1	11	229,6	229,6	262,5	262,5
Tier-2	42	179,0	337,6	217,4	562,8
	Total	565,6	724,2	479,9	825,3

Source: https://edms.in2p3.fr/document/I-010099

Local Network Requirements

- We need to better understand how the data will be accessed by the jobs running in the site
 - Direct impact on the needs of the local network

Compute Capacity Increase

- On-going call for tenders for compute nodes and disk servers
 - +4,5 M SI2000
 - Non-LHC: 1 M SI2000
 - LHC
 - o Needs for 2007: 1,3 M SI2000
 - Provision for 2008: 2,2 M SI2000 (~40% of capacity required in 2008)
 - +1200 TB (DAS)
 - LHC needs for 2007: 400 TB
 - LHC provision for 2008: 800 TB
 - +160 TB (SAN)

Compute Capacity Increase (cont.)

Cartridge library

10.000 slots, 30 drives, up to 5 PB

LCG

Grid Services

- Consolidate current grid services and integrate them into « normal » operations
 - Works towards the stability desired not only by the experiments but by the people operating the services at the site

Consolidation of grid services (by the end of June 2007)

Analysis Facility

- We need to understand what it really means to design and operate an analysis facility
 - A big help from the experiments is required (also) in this area

New building

- On-going project for building an additional machine room
 - 800 m² floor space
 - Electric power for computing equipment: 1 MW at the beginning, with capacity for increasing up to 2,5 MW
- Offices: for around 30 additional people
- Meeting rooms, 140+ seats amphitheatre
- Target availability: mid 2009

New building (cont.)

Conclusions

- Ramp up plans of the site is rather aggressive
 - Several constraints don't really make our life easier
- Operating the grid services in their current status is complex and requires (highly competent and motivated) people
- On-site people dedicated for supporting the experiments are instrumental in optimising the utilisation of the site resources
- Don't understimate your infrastructure needs

Acknowledgments

- Thanks to the people that contributed material to this talk
 - This presentation would be even longer if I listed them all

More Information

- LCG-France website http://lcg.in2p3.fr
- LCG-France T2-T3 Technical coordination wiki page: http://lcg.in2p3.fr/wiki/index.php/T2-T3
- CC-IN2P3: http://cc.in2p3.fr

Questions

Fabien Wernli, 2006