

Some CMS Grid analyses

- Computing, Simulation and Analysis challenge (CSA) 2006
 Tracker Integration
 - Stijn De Weirdt (VUB) Pascal Vanlaer (ULB) Giacomo Bruno (UCL)

CMS analysis exercises during CSA06

Goals

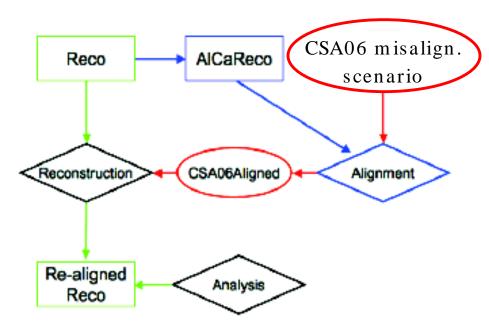
- Test various analysis workflows and data formats
 - Calibration and alignment / AlCaReco formats
 - Physics studies / Analysis Object Data (AOD) format
- Train physicists to CMS Grid computing tools
 - Data Bookkeeping System / Data Location Service (DBS/DLS)
 - CRAB: CMS Remote Analysis in Batch
 - User Interface to grid scheduler (LCG, gLite and OSG) and to DBS/DLS
 - Tier-2 computing tools
 - Data transfers to Tier-2
 - Tier-2 file system (dCache etc.)
 - Interactive analysis of root files on Tier-2 store
- In total ~30 exercises, ~70 physicists involved during2 months, quasi-online

List of exercises

Calibration/Alignment

- ECAL calibration
 - E/p of isolated electrons
 - Φ—Symmetry of ECAL
 - Z→e⁺e⁻ intercalibration
- HCAL calibration
 - By isolated tracks
 - Φ—Symmetry
- Tracker, Muon alignment
 - $Z \rightarrow \mu^+ \mu^-$

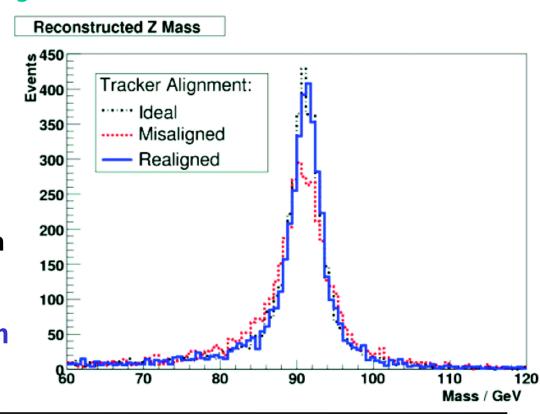
Physics Analyses


- Extraction of W→μν
- Di-μ spectrum
- Tau-tagging efficiency
- Minbias-underlying event
- Leptonic top decays
- Lepton isolation in ttbar
- W mass
- SUSY LM1 benchmark point studies
- Excited quarks / Z'→jets
- High-energy di-electron pairs
- . . .

Example: tracker+ muon alignment workflow

Goal

Provide and apply alignment corrections for reconstruction, in a production environment.



- Read constants from DB at prompt reco. (PR) [T0]
- Write dedicated stream during PR [T0]
- Run alignment on these streams [T0]
- Store and distribute DB object [T1/2]
- Re-reconstruct with new constants [T1]
- Run analysis [T2]

Achievements

- AlCaReco formats defined, e.g. For alignment:
 - 1 million $Z\rightarrow \mu^+\mu^-$ events simulated
 - AlCaReco with only (used tracker hits + full track fit info)
 - Residuals etc.; allows alignment + track refit
- Full chain exercised
 - Data flows T0-T1-T2
 - Alignment
 - Geometry DB update
 - Re-reconstruction
 - Publication of Re-RECO data
 - Re-analysis of Z→μ⁺μ⁻
- ...in 2 days after publication
- of AlCaReco data file

Two "real-scale" analyses on the Grid in Belgium

- During CSA06: High-Energy Electron and Photon Pairs working group (HEEPP — Brussels et al.) within CMS SUSY/BSM Physics group
- During Tracker Integration test: tracker time synchronization and data quality monitoring (UCL et al.)

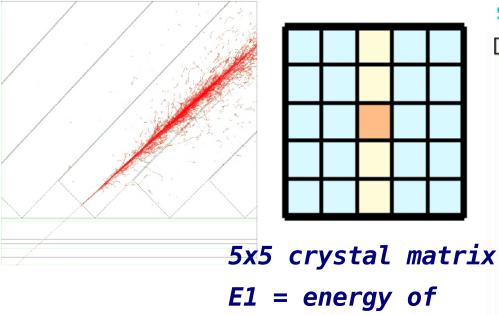
CSA06 HEEPP analysis exercise

Goals

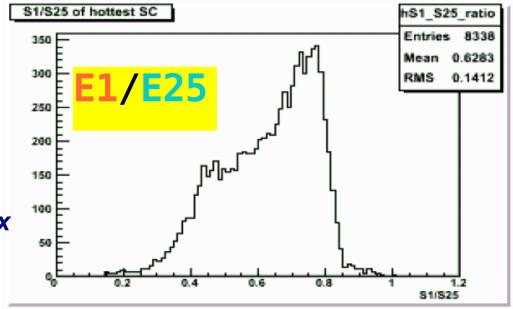
- Learn and prepare tools for early data analysis
 - CMS computing tools
 - Was very useful
 - Lessons made into tutorials for Belgian Tier-2 users
 - » http://mon.iihe.ac.be/trac/t2b/wiki
 - ightarrow Getting started with CMS software on the Grid
 - Data and workflow for early analysis
 - Data validation
 - Event selection technology, specific HEEPP trigger criteria

The exercise

- Select Z'(m=700 GeV)→e⁺e⁻ in "ExoticSoup" event mixture
 - 1M evts, 39% Z' all decays; 39% SUSY LM1, 22% excited quarks

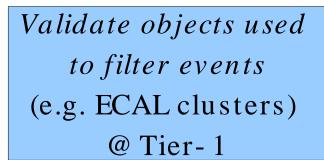


CSA06 HEEPP analysis workflow


Validate objects used to filter events
(e.g. ECAL clusters)
@ Tier- 1

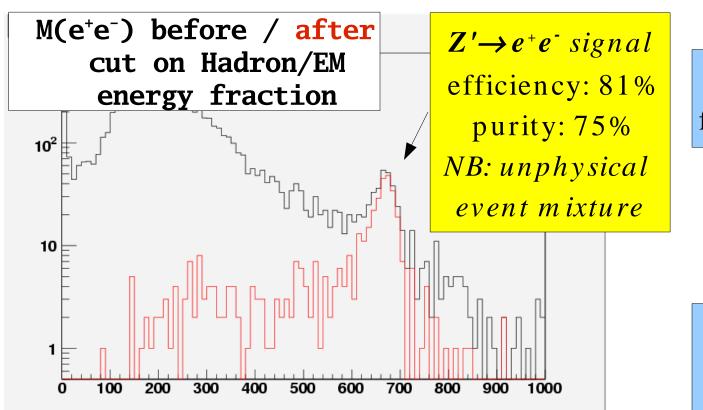
- Wait for publication of official ExoticSoup RECO files in DBS/DLS
- Run Ecal cluster analysis on host Tier-1 using CRAB

• e.g. Histos of lateral shower shape



hottest crystal

CSA06 HEEPP analysis workflow (2)



Implement event filter
in CMS software
framework

Validate filter

(efficiency - purity)
on test sample

@ Tier- 2

Publish filter in cvs for prod. team to run

Subscribe to filtered data set

Perform analysis
on filtered data set
transferred @ Tier- 2

Lessons learned

Validate objects used to filter events
(e.g. ECAL clusters)
@ Tier- 1

Implement event filter
in CMS software
framework

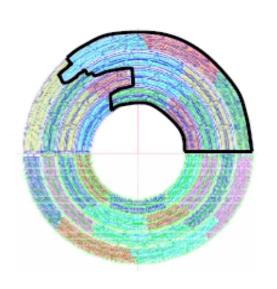
- Validate filter

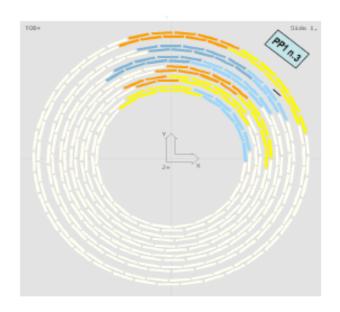
 (efficiency purity)
 on test sample

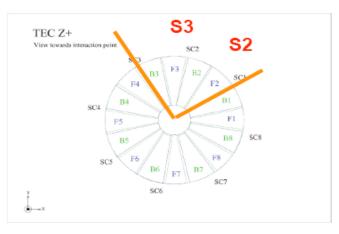
 @ Tier- 2
- Lot of preparation work before large-scale batch analysis on Grid
 - Preparation = mostly interactive analysis
 - i.e. non-Grid
 - Need some moderate Tier-3 CPU capacity
 - » 8 CPU's during CSA06
 - » direct access to Tier-2 disks
 - HEEPP exercise in CSA06: extreme case
 - Data and filter validation (timecritical) done on Tier-3 on local copy of official sample

Publish filter in cvs for prod. team to run

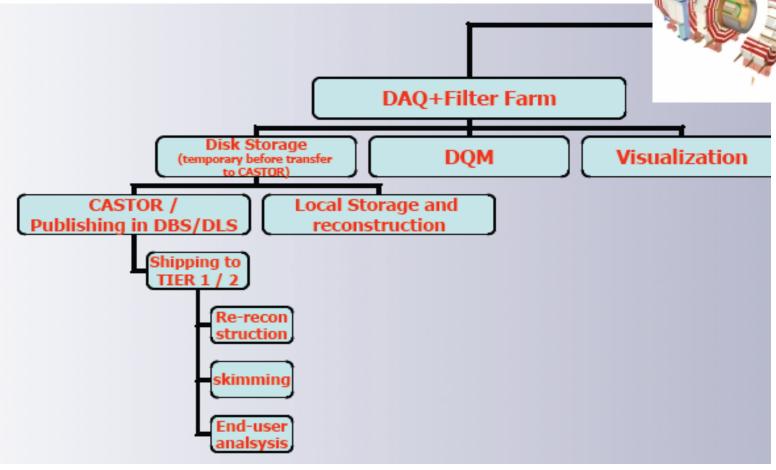
Subscribe to filtered data set


Perform analysis
on filtered data set
transferred @ Tier- 2




CMS Tracker Slice Test at the TIF (Tracker Integration facility)

- >2000 silicon strip modules (15% final system)
 - Tracker Inner Barrel / Inner Disks: 640 modules (36% of TIB/TID+)
 - Tracker Outer Barrel: 720 modules (28% of TOB+)
 - Tracker EndCap: 800 modules (25% of TEC+)



Tracker Analysis Center (TAC):

- Tracker Control Room + Tier 0 + Central Analysis Facility
- → Use standard CMS computing tools

Data processing

- Storage at TAC:
 - Filter Farm Storage manager stores raw data files on local disk server (2.8TB - no redundancy)
 - Only temporary storage
- Processing at TAC:
 - Cabling info, pedestals and noise moved from online DB to offline DB via 020 programs
 - Process Raw data with CMSSW + ProdAgent
 - Currently only file conversion: RU (old Tk custom online output format)→EDM or DAT (standard Storage Manager output format)→EDM
- Files copied to CASTOR (RAW data + EDM ROOT tuples)
- EDM files (only) registered in Data Bookkeeping Service (DBS) and Data Location Service (DLS)
- Data published in DBS/DLS is ready to be transferred via PhEDEx (injection currently done in Bari)
 - T1/T2 center (e.g. FNAL) simply subscribe to the data sets

CMS

Conclusions

- CMS data and work-flows exercised in many analysis usecases
 - Full data and work-flow in Alignment/Calibration use cases
 - Physics analyses
 - Main output is training to software and computing tools
 - Detector integration
 - Standard data and work-flow successfully used for Tracker
- Many problems identified and solved
 - e.g. Undesireable couplings between CRAB, DBS/DLS and reconstruction software versions
- Next
 - Study implications of data distribution according to trigger streams (CSA07)
 - Improve involvement and reliability of Tier-2's (CSA07)
 - Improve support to analyses (in progress)