Mesurer l'infiniment petit, Observer l'infiniment grand

- 2^{ème} partie -

Les détecteurs pour la physique des particules

David Attié

Rencontres de physique de l'infiniment grand à l'infiniment petit

23 juillet 2012

- Introduction
- Famille de détecteurs pour la physique des particules
- Mesure d'énergie selon leur domaine
- Résolutions et temps morts des détecteurs
- Détecteur gazeux
- Détecteurs solides
- Exemple avec les détecteurs au LHC

- Efficacité : flux détecté/flux incident, >99% selon les sous-détecteurs et les traces recherchée (éviter les faux evts)
- Bonne résolution sur : l'énergie E, la position \rightarrow le moment, ...
- Eviter les zones mortes et les temps morts (électronique et récupération rapide). Au LHC, : croisement p-p toutes les 25ns soit 40MHz
- Stabilité de fonctionnement : fixer les tensions, % de gaz, température, ...
- Une granularité adaptée : éviter la superposition des événements/des traces
- Le moins de matière avant les calorimètres ($\leq 0.5 X_0$ soit 4 cm d'aluminium) : tenir compte des câbles, de la structure mécanique, du refroidissement, ...
- Pas de biais de détection entre particule/anti-particule sans charge. Important pour étude de symétrie.
- Faible ou pas de vieillissement dues aux radiations

Différents types de détecteurs

Familles de détecteur de physique des particules

		Ionisation	Perte radiative	Ionisation		
	Particules	Détecteurs de traces	Calorimètres	Chambres à muons		
	Photon	Traverse sans interagir ni produire du signal, en général	Absorbé par les premiers matériau du calorimètre électromagnétique	N'atteint pas		
	Electron	Traverse en laissant une trace d'ionisation	Absorbé par les premiers matériau du calorimètre électromagnétique	N'atteint pas		
	Muon	Traverse en laissant une trace d'ionisation	Traverse en laissant une trace d'ionisation (faible dépôt d'énergie comparé aux gerbes)	Traverse en laissant une trace d'ionisation		
	Tau	Désintègre à proximité du point d'interaction, peuvent être détectés avec un détecteur de vertex de haute précision	N'atteint pas	N'atteint pas		
	Hadron chargé	Traverse en laissant une trace d'ionisation	Absorbé avec dépôt d'énergie sur toute la profondeur de matière	N'atteint pas		
		 Position Moment (B) Energie (dE/dx) 	 Position Energie (dE/dx) 	Position		

Familles de détecteur de physique des particules

• En plus de détecter ces particules il faut différencier les couples : K/ π /p, les π /e, les e/ γ + π , les π^0 / γ

Mesure de l'énergie selon leur domaine

Energie des particules	Moment (traces de particules chargées)	Calorimétrie		
keV – MeV	Longueur de trace trop petite pour mesurer leur courbure	Absorption de l'énergie de la particule initiale		
100 ^{aines} de MeV	Bonne mesure de la courbure dans un champ magnétique de ~2 à 4T	Erreurs relatives importante à cause des fluctuations de gerbes de particules		
100 ^{aines} de GeV	Traces trop droite même avec un champ magnétique > 4T Trajectoires longues	Erreurs relatives faibles		

- Loi de Landau : décrit les fluctuations des pertes d'énergie de particules chargées traversant une fine couche de matière
- Faible largeur de la gaussienne \rightarrow meilleur estimation du dE/dx
- Valeur la plus probable est nettement moins élevée que la valeur moyenne
- Queue à haute énergie : si on augmente l'épaisseur du détecteur, la résolution dE/dx ne s'améliore pas beaucoup

Résolutions et temps morts de détecteurs

	Type de détecteurs	Résolution spatiale (µm, rms)	Résolution en temps	Temps mort	
X	Chambre à étincelles	300	2 µs	100 ms	
gazeu	Chambre proportionnelle	50-100	2 ns	200 ns	
eur	Chambre à dérive	50-100	2 ns	100 ns	
étect	MPGD	30-40	< 10 ns	20 ns	
Ď	RPC	≤ 10	1-2 ns	-	
	Chambre à bulle	10-150	1 ms	$50 \mathrm{ms}$	
s ides	Chambre à argon liquide	175-450	~200 ns	$\sim 2 \ \mu s$	
steur /sol	Emulsion	1	-	-	
)éted iides	Scintillateur	-	100 ps/n	10 ns	
I liqu	Piste (silicium)Largeur/(3 à 7)		Limité par la lecture	Limité par la lecture	
	Pixel (silicium)	2	Limité par la lecture	Limité par la lecture	

- Le dépôt d'énergie est ~ instantanée : ps dans liquide/solide, ns dans gaz
- Le temps de collection du signal est lié au temps de dérive des porteurs
- Le choix de l'électronique détermine aussi le temps de collection du signal

Mesure du moment avec un détecteur de traces

• Une particule de charge e et de moment (p_r , p_{ϕ} , p_z) traversant un détecteur de trace est courbé par un champ magnétique axial et uniforme (0, 0, B_z) et décrit une trajectoire hélicoïdale. Dans le plan ($r\phi$) la trajectoire projetée et un arc de cercle de rayon :

$$R = \frac{\sqrt{p_r^2 + p_{\varphi}^2}}{eB} = \frac{p_t}{eB} = \frac{L^2}{8s}$$

Où L est le rayon externe de la chambre (TPC) et s=BC la sagitta de la trace projetée

• La valeur du moment est donc :

$$p_t = \frac{eBL^2}{8s}$$

Détecteur solide vs. Détecteur gazeux

Détecteurs gazeux

Exemple de détecteur

Nombre d'ions collectés

- I.
- II. <u>Chambre d'ionisation</u> : collection des charges sans amplification
- III.a <u>Mode proportional</u> : le signal est amplifié par avalanche proportionnelle à l'ionisation
- III.b <u>Mode streamer</u> : avalanche secondaire induite par les photons de la première avalanche \rightarrow nécessité d'un composant pour stabilisé (quencher)

IV. <u>Mode Geiger-Müller</u> (ou mode breakdown) : Avalanche dans tout le détecteur. Courant en sortie saturé.

Fonctionnement d'une TPC

- Chambre à projection temporelle (*Time Projection Chamber*) inventée par D. Nygren (1974)
- Mesure en 3-D d'une trace : (2-D par projection en x-y) × (1-D en z = $v_{dérive}$ × $t_{dérive}$)
- Identification des particules grâce à l'énergie déposée par unité de longueur dE/dx
- Trajectographe à faible occupation (X₀) et grande densité de traces

• <u>Principe</u> :

- 1. Une particule chargée ionise le gaz de la chambre
- Les e- primaires dérivent le long de E vers le fond de la chambre (anode) suivant une longue dérive (x,y et v_{dérive}×t → z)
- 3. $\overrightarrow{B} | | \overrightarrow{E}$ réduit la diffusion transverse <u>et</u> permet la mesure de la quantité de mouvement p de la particule
- 4. L'ionisation primaire est amplifiée au plan d'anode (ex: Micromegas)
- 5. Electronique de lecture pour enregistrer le signal

MPGD

Choix technologique d'amplification pour la TPC : Micro Pattern Gaseous Detector

- plus robuste que les fils
- pas d'effet E×B

- signal rapide et gain élevé
- faible retour des ions

- vieillissement négligeable
- facile à fabriquer

Détecteurs solides

Matériau scintillant

- Emet de la lumière après excitation au passage d'une particule chargée ou non
- Doit être transparent à la lumière produite par fluorescence ou phosphorescence
- Il existe deux familles de matériau scintillant :
 - 1) Organique (fonctionne avec les niveaux moléculaires)
 - Trois types : cristallin, liquide et plastique
 - Lumière du bleu au vert
 - Faible efficacité des photons gamma, sensible au Compton
 - 2) Inorganique (fonctionne avec les niveaux cristallin)
 - Densité plus importante : 4-8 g/cm³. NaI, CsI, ...
 - Bonne efficacité aux photons gamma

Exemple de scintillateurs

Tableau 2 – Propriétés des composants de scintillateurs organiques								
Nom du composé	Intensité relative λ _{max} émission de lumière émise (nm)		Temps de décroissance (ns)	Masse volumique (g ⋅ cm ⁻³)				
Cristaux organiques								
Anthracène	100	448	22	1,25				
<i>trans</i> -Stilbène	75	384	4,5	1,16				
Naphtalène	32	330 à 348	76 à 96	1,03				
<i>p,p</i> '-Quaterphényle	94	437 7,5		1,20				
Activateurs primaires								
2,5-Diphényloxazole (PPO)	75	360 à 416	5					
2-Phényl-5-(4-biphénylyl)-1,3,4-oxadiazole (PBD)	96	360	5					
4,4"-Bis (2-butyloctyloxy)-p-quaterphényle (BIBUQ)	60	365 à 393	1,30					

Tableau 4 – Propriétés des principaux scintillateurs inorganiques								
Propriétés	CeF ₃	PbWO ₄	BaF ₂	BGO	CsF	CsI	CsI(TI)	NaI (TI)
Masse volumique(g/cm ³)	6,16	8,28	4,9	7,13	4,64	4,53	4,53	3,67
Longueur d'absorption (cm à 511 keV)	1,9	3,1	2,3	1,1	2,3	1,8	1,8	2,9
Longueur de radiation(cm)	1,68	0,89	2,1	1,1	2,0	1,86	1,86	2,6
Décroissance courte(ns)	≈ 5	5 à 15	0,6		2,8	≈ 10,4		230
Décroissance longue(ns)	30		620	300	4 · 4	> 1 000	> 1 000	150 (ms)
Pic d'émission courte(nm)	310	440 à 500	220		390	300		415
Pic d'émission longue(nm)	340		310	480		> 400	550	
Indice de réfraction (au pic d'émission)	1,68	2,16	1,56	2,15	1,48	1,8	1,8	1,85
Taux de production de lumière (NaI(TI) = 100)	4 à 5	1	5 à 16	7 à 10	6	3,7	85	100
Hygroscopie	non	non	faible	non	très	faible	faible	oui

23 juillet 2012

Mesurer l'infiniment petit, observer l'infiniment grand – 2^{ème} partie

• L'amplification de la lumière émise par les scintillateur se fait avec un photomultiplicateur :

- Le gain est donné par : $G = K(V_{HT})^{N\alpha}$
 - K est une constante
 - $\rm V_{HT}$ est la tension entre les dynodes
 - N le nombre de dynode
 - $-\alpha,$ déterminé expérimentalement, est compris entre 0,6 et 0,8.

Matériau semi-conducteur

Détecteur à jonction Si (P+N)

- Le détecteur est constitué d'une zone utile, la zone de déplétion, où règne un champ électrique important, et de zones mortes dues aux contacts ohmiques, aux zones non déplétées et aux effets de bords
- La jonction PN peut être assimilée à une chambre d'ionisation solide. On peut pousser l'analogie avec les chambres gazeuses à fils lorsque l'on segmente une jonction PN en plusieurs éléments contigus, on réalisera alors un détecteur à micropistes

• De par son numéro atomique élevé (Z = 32) comparé à celui du silicium, le germanium est bien adapté à la détection X et γ , . Néanmoins, il doit être refroidi à 77 K.

Exemples

• ALEPH (Apparatus for LEP PHysics at CERN) était un des quatre détecteurs montés sur le collisionneur Large Electron Positron (LEP) au CERN

• Deux principaux détecteurs concurrents et complémentaires : ATLAS & CMS

Détecteur	Dimensions (m ³)	Poids (tonnes)	Compétence principale
ATLAS	$46 \times 25 \times 25$	7 000	Calorimètre
CMS	$21 \times 16 \times 16$	12 500	Spectromètre
ALICE	$21 \times 15 \times 15$	10 000	Ions lourds
LHCb	$21 \times 15 \times 15$	5 600	Symétrie matière/antimatière

ATLAS

CMS (Compact Muon Solenoid)

- <u>ECAL</u> : 80 000 cristaux ; scintillants de tungstate de plomb (PbWO₄)
- HCAL : couches intercalées de matériau dense (laiton) et de scintillateurs plastique ou de fibres de quartz
- <u>Chambres à muons</u> : CSC (*Cathode strip chamber*) & RPC (*Resistive Plate Chamber*)

CMS (Compact Muon Solenoid)

ATLAS (A Toroidal LHC ApparatuS)

ATLAS (A Toroidal LHC ApparatuS)

Premières collisions p-p à 7 TeV

Premières collisions p-p à 7 TeV

23 juillet 2012

Candidat Higgs dans CMS

Candidat Higgs dans ATLAS

Taux de production des interactions $e+e- \rightarrow X$

Détection de neutrino

Questions ?

