Microbulk technology

F.J. Iguaz

on behalf of IRFU-CEA/Saclay: E. Ferrer-Ribas, A. Giganon and I. Giomataris

MPDG Saclay - 8th December 2011

Index

- 1 Microbulk technology and applications
- 2 Some applications of microbulk technology
- 3 Characterization in argon and neon-based mixtures
- 4 Conclusions and outlook
- Back-up

Microbulk technology The microbulk technology

Readout and mesh in one piece: S. Adriamonje et al., JINST 5 (2010) P02001

The pillars are constructed by chemical processing on a kapton foil, to which the mesh and the readout plane are attached.

A conventional and a microbulk Micromegas CAST detector

Microbulk technology General features of microbulk detectors

- Excellent energy resolution.
- Low intrinsic background.
- Low mass and flexible structure.
- Stable gain during long periods.

Being improved

- Higher electrical capacity.
- Large area detectors.
- Mass production.

Applications of the microbulk technology CAST: A solar axion experiment

- CAST experiment uses a LHC dipole magnet to detect solar axions.
- Energy range of interest: 1-8 keV.
- 3 Micromegas detectors installed. Readout: 106×106 strips, 550 μ m pitch. Gas: Ar + 2.3% Isobutane at 1.44 bar.
- See talks by Esther Ferrer Ribas and JuanAn García.

F.J. Iguaz Microbulk 5 / 27

Applications of the microbulk technology nTOF: A neutron flux monitor and 2D profiler

- A thin microbulk detector has been placed in the beam, equiped with a converter (¹⁰B or ²³⁵U) deposited on the drift electrode.
- Minimum beam perturbation and induced background.
- Wide energy range, high efficiency and accuracy.
- See talk by Francesca Belloni.

Applications of the microbulk technology A ¹³⁶Xe TPC equiped with a Micromegas readout

Feasibility studies in NEXT project

- Energy resolution: S. Cebrian et al., JCAP (2010) 1010:010.
- Radiopurity: S. Cebrian et al. Astropart. Phys. (2011) 34 354.
- Prototypes: T. Dafni et al., J. Phys. Conf. Ser. 309 (2011) 012009.
- Background: F.J. Iguaz, http://zaguan.unizar.es/record/5731.
- See talk by Laura Seguí.

F.J. Iguaz Microbulk 7 / 27

Applications of the microbulk technology A ¹³⁶Xe TPC equiped with a Micromegas readout

Feasibility studies in NEXT project

- Energy resolutions < 3% FWHM at 2458 keV $(Q_{\beta\beta})$ in pure xenon.
- Gains greater than 10² in pure xenon.
- Low background level due to the detector.
- High background rejection power ⇒ Three orders of magnitude.

F.J. Iguaz Microbulk 8 / 27

Characterization in argon- and neon-based mixtures Some words about this base research work

Motivation

- Micromegas detectors have been generally tested in Ar + 5% isobutane. This gas is suppossed to be the best for a high gain and excellent energy resolution.
- What happens in other gases? What is the relation of gain and energy resolution with the gas and the gap distance?

Application

- Results will serve as a reference for Micromegas users.
- Higher gains are envisaged to reduce the energy threshold of detectors to allow its application in sub-keV experiments.

F.J. Iguaz Microbulk 9 / 27

Characterization in argon-based mixtures Setup description

- Setup designed to characterized a maximum of three Micromegas detectors in the same gas conditions.
- A mesh frame is used as drift cathode: drift distance = 10 mm.
- The top cap contains several holes, covered by an aluminized mylar film, used to calibrate the detectors

F.J. Iguaz Microbulk

10 / 27

Characterization in argon-based mixtures Procedure description

11 / 27

- Two microbulk detectors (diameter: 35 mm, a single anode) with respectively gaps of 50 and 25 μ m have been tested in argon-based mixtures, using as a quenchers isobutane, cyclohexane and ethane. We focus on the first detector.
- Calibrated with an iron source (⁵⁵Fe, x-rays of 5.9 keV).
- Electronic chain: ORTEC 142C preamplifier + ORTEC 472A amplifier + AMPTEK MCA-8000A

Characterization in argon-based mixtures Motivation

- The effect of quenchers was already studied with proportional counters in Agrawal & Ramsey, Nucl. Instrum. Meth. A 273 (1988) 331.
- Lower gains and worse energy resolutions observed for quenchers whose ionization threshold is more different from the 1st metastable levels of argon (11.4 eV). Actual observations don't confirm this idea.
- Note that the cyclohexane has a lower ionization threshold for ionization (9.9 eV) than isobutane (10.7 eV) and ethane (11.7 eV).

Quencher	I_e	Energy Res.			
	(eV)	10^{2}	10^{3}	10^{4}	
Methane	13.0	14.9	15.0	16.1	
Carbon dioxide	13.8	15.8	16.5	16.8	
Propane	11.2	13.6	14.3	14.5	
Ethane	11.7	14.0	14.0	14.4	
Isobutane	10.7	13.8	14.0	14.5	
Propylene	9.7	14.3	14.8	15.8	
Trans-2-butene	9.2	14.5	14.8	15.2	

12 / 27

Characterization in argon-based mixtures Mesh electron transmission for a gap of 50 μ m

Procedure

The drift voltage is varied for a fixed mesh voltage and the peak position is normalized by the maximum value.

- For E_{drift}/E_{mesh} lower than a specific value, there is a maximum in the electron transmission (A=0.01 for a 5%). For higher drift fields, the mesh stops being transparent for primary electrons.
- The plateau widens with the porcentage of isobutante and seems to be correlated with the diffusion coefficients.

Characterization in argon-based mixtures Mesh electron transmission and energy resolution

Electron tranmission

Energy resolution

- The energy resolution is correlated with the electron transmission. Best values at the maximum of the mesh transparency.
- At high isobutane quantities, there is a continuous degradation.
- Best values respectively obtained at 5% and 7% iC₄H₁₀.

Characterization in argon-based mixtures Absolute gain for a gap of 50 μ m

Procedure

The ratio E_{drift}/E_{mesh} is fixed so as the mesh showed the maximum electron transmission. The mesh voltage is varied and the peak position registered.

- An absolute gain greater than 10^4 is reached before the spark limit.
- At low quantities of isobutane, there is an over-exponential behaviour due to UV photons (P. Fonte et al., NIMA 305 (1991) 91 and I. Krajcar Bronic et al., NIMB 142 (1992) 219).

Characterization in argon-based mixtures Absolute gain and energy resolution

- It is constant for a wide range of amplification fields.
- For low fields, bad resolution due to the worse signal-noise ratio.
- For high fields, the resolution worsens due to the gain fluctuations. This effects doesn't appear for high quantities of isobutane.

F.J. Iguaz Microbulk 16 / 27

Characterization in argon-based mixtures Electron transission curves for a gap of 50 μ m

The plateau of maximum transmission is wider in argon-cyclohexane mixtures than in other gases. It is similar for the other two mixtures.

Characterization in other argon-based mixtures The gain curves for a gap of 50 μ m

- A gain of 4×10^4 is reached in argon-cyclohexane before the spark limit.
- Amplification fields for 10% of quencher and a gain of 10⁴: 61 (cyclohexane), 65 (isobutane) and 72 kV/cm (ethane).

Characterization in argon-based mixtures

The dependence of the energy resolution with the gain for a gap of 50 $\mu \mathrm{m}$

Index

- There is a degradation at high gains due to over-exponential behaviours. It disappears for high quencher concentrations but the best value worsens.
- 12% FWHM for gains 10³-10⁴, independently of the quencher.

Characterization in neon-based mixtures Comparison of the gain curves

Neon-Isobutane mixtures

Argon-Isobutane mixtures

- Gains up to 10^5 are reached in neon-based mixtures (a factor 2).
- The amplification field needed for a fixed gain does not increase with the quencher concentration as in argon-isobutane mixtures.
- Amplification fields for 5% of quencher and a gain of 10^4 : 65 (argon-isobutane) and 75 kV/cm (neon-isobutane).

Characterization in neon-based mixtures Dependence of the energy resolution with the gain

Neon-Isobutane mixtures

Argon-Isobutane mixtures

- The energy resolution of the 50 μ m-thickness-gap detector improves: from 11.6% FWHM in Ar+5% Iso down to 10.5% FWHM in Ne+7% Iso.
- Good values are also obtained at gains as high as 5×10^4 .
- This effect can not be explained by the primary ionization but by the fluctuations in the avalanche.

Characterization in neon-based mixtures

The energy resolution and the primary ionization

• The energy resolution of a Micromegas detector can be expressed as

$$R(\% \text{ FWHM}) = 2.35 \sqrt{\frac{W}{E_0} (F+b)}$$

where E_0 is an energy reference, F is the gas Fano Factor, W is the mean ion-electron energy and b is the detector contribution.

- Note that W = 36.4 eV for Ne and 26.3 eV for Ar and the Fano factor is 0.17 for Ne and 0.22 for Ar. Then $W \times F$ is 6.19 for Ne and 5.79 for Ar.
- The energy resolution should be worse in neon than in argon mixtures!!

ArgonNeon Index Microbulk Applications Conclusions Back-up

Characterization in neon-based mixtures

The energy resolution and the avalanche fluctuations

Fluctuations vs Townsend coefficient

Ionization yeld vs the amplification field

H.Schindler et al., Nucl. Instrum. Meth. A 624 (2010) 78

There are less avalanche fluctuations due to a higher ionization yield, i.e., the energy acquired by the electrons of the avalanche creates more than electrons than atom excitations in neon than in argon-based mixtures.

> Microbulk 23 / 27

The energy threshold of micromegas detectors

Energy spectrum in Ne+7%Iso

Energy spectrum in Ar+8.6%Cyclo

- Mesh pulses were acquired by a LeCroy WR6050 oscilloscope. The energy spectrum has been generated with the pulses's amplitude.
- Neon escape peak observed at 910 eV. Energy threshold is at 400 eV.
- In argon-cyclohexane mixtures, the threshold is at 300 eV.
- Preliminary result for CAST detector (1.257 nF vs 300 pF): 700 eV.

Conclusions

Summary

- Microbulk detectors have been tested in argon- and neon-based mixtures. The maximum gain was respectively 4×10^4 and 10^5 and the energy resolution 11.6% and 10.5% FWHM at 5.9 keV.
- Three quenchers used (isobutane, cyclohexane and ethane). Higher gain with cyclohexane, lower with ethane. No effect in the energy resolution.
- The energy threshold of microbulk detectors is as low as 300 eV.

Outlook

- Characterization of microbulk detectors with a gap of 12.5 and 25 μ m and different holes and pitch in argon-isobutane mixtures.
- A new idea of loannis: X Y detector by segmenting the mesh.
- Study of the energy threshold of CAST detectors.
- Tests of microbulk detectors at high pressure.

Microbulk 25 / 27

Conclusions

Microbulk with a stripped mesh

Background spectrum of CAST-M18

Outlook

- Characterization of microbulk detectors with a gap of 12.5 and 25 μ m and different holes and pitch in argon-isobutane mixtures.
- A new idea of loannis: X Y detector by segmenting the mesh.
- Study of the energy threshold of CAST detectors.
- Tests of microbulk detectors at high pressure.

10

Conclusions

10 d 1 bar 10 ba

Absolute gain for pure argon Outlook

Absolute gain for Ar+1%Isobutane

- Characterization of microbulk detectors with a gap of 12.5 and 25 μ m and different holes and pitch in argon-isobutane mixtures.
- A new idea of loannis: X Y detector by segmenting the mesh.
- Study of the energy threshold of CAST detectors.
- Tests of microbulk detectors at high pressure.

Back-up slides.

Micromegas and microbulk technology Micromegas: A Micro-Pattern Gas Chamber detector

I. Giomataris (1992)

A thin metallic grid and an anode plane, separated by insulated pillars. They define a very little amplification gap $(20\text{-}300\mu\text{m})$.

A support ring or frame adjust the mesh on top of the readout plane, with the help of some screws.

- Good properties: High granularity, good energy and time resolution, stable, easy construction, little mass and radiopure.
- Limitations: Large scale production, dimensions and resolutions.

Micromegas and microbulk technology How a 2D microbulk detector is built

Characterization in argon-based mixtures Description of the refrigerator

- The base gas is forced to pass by a glass vessel, filled with the liquid quencher like cyclohexane.
- The gas concentration is defined by the temperature of the liquid, which is fixed by the refrigerator in which the vessel is kept.
- The temperature can not be higher than the ambient one to avoid condensations inside the gas chamber, which may damage the microbulk detectors.

F.J. Iguaz Microbulk 31 / 27

Characterization in other argon-based mixtures Some ideas about the 25 μ m-thickness-gap detector

Electron transmission curve

Energy resolution versus ratio of fields

- There is no real plateau of maximum electron transmission plateau.
- There is a narrow range of fields for an optimum energy resolution.
- Gains $> 10^4$ are reached for all mixtures before the spark limit.
- 11.7% FWHM for gains 10^3 - 10^4 and all quenchers.
- The optimum is at higher quencher concentrations (iso: 7-15%).

Characterization in argon-based mixtures

Comparison of electron transmission in argon-isobutane

25 μ m-thickness-gap detector

50 μ m-thickness-gap detector

- At low isobutane quencher concentrations, there is a plateau of maximum transparency but is reached at higher drift fields.
- At high quencher concentrations, there is an endless increase of the gain.
- Energy resolution is not more correlated with electron transmission.
 There is a narrow range of fields for which is the optimum.

Characterization in argon-based mixtures

Comparison of electron transmission in argon-isobutane

Electron transmission curve

Energy resolution versus ratio of fields

- At low isobutane quencher concentrations, there is a plateau of maximum transparency but is reached at higher drift fields.
- At high quencher concentrations, there is an endless increase of the gain.
- Energy resolution is not more correlated with electron transmission.
 There is a narrow range of fields for which is the optimum.

Characterization in argon-based mixtures

The gain curves for a gap of 25 $\bar{\mu}\mathrm{m}$

- A gain of 10⁴ is reached for all mixtures before the spark limit.
- However, higher quencher concentrations are needed.
- For the same % and field, higher gain with cyclohexane than with isobutane and ethane

Characterization in argon-based mixtures

The dependence of the energy resolution with the gain for a gap of 25 $\mu \mathrm{m}$

- There is a degradation at high gains and low concentrations.
- The optimum is at higher quencher concentrations (isobutane: 7-15%).
- 11.7% FWHM for gains 10³-10⁴, independtly of the quencher.

Neon-based mixtures for sub-keV applications Motivation

- Micromegas detectors have been tipically operated in argon-isobutane mixtures, as they are well adapted for measurements in the 1-10 keV range, providing an excellent energy resolution and gains up to 2×10^4 .
- Other gases are being studied to increase its sensitivity in the sub-keV region, which could allow its application in synchroton radiation and Dark Matter searches where the low energy threshold is crutial.
- The signal to noise ratio must be increased and higher gains are needed.
- Neon as base gas has been studied as the charge per single avalanche increases and approaches the Rather limit (10^8 electrons).

Neon-based mixtures for sub-keV applications The dependence of the energy resolution with the gain for a gap of 25 μ m

Index

- The energy resolution is worse in neon-based mixtures for a gap of 25 μ m and a high quencher concentration is required.
- Best values: 12.7% (25% iso),
 17% (10% cyclo), 14.8% FWHM (25% ethane).

Absolute gain

Microbulk technology Radiopurity of microbulk detectors

Sample	$^{232}\mathrm{Th}$	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	$^{40}{ m K}$	$^{60}\mathrm{Co}$
Micromegas					
without mesh	4.6 ± 1.6	< 6.2	< 40.3	<46.5	<3.1*
Microbulk-Micromegas	< 9.3	<13.9	26.3±13.9	57.3±24.8	<3.1*
kapton-copper foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*
copper-kapton-copper foil	<4.6*	<3.1*	<10.8	<7.7*	<1.6*
Hamamatsu					
R8520-06 PMT [28]	27.9 ± 9.3	-	<37.2	1705.0±310.0	93.0±15.5

^{*}Level obtained from the Minimum Detectable Activity (MDA) of the detector [29].

S. Cebrian et al. Astropart. Phys. (2011) **34** 354.