New Developments with Microbulk Micromegas. Charge and Light Readout.

Laura Segui Isegui@unizar.es University of Zaragoza

- \triangleright Microbulks for $\beta\beta0\nu$ (and rare events) searches in a HP gas TPC
- Relationship between them and the work presented here
- 1. MicroMegas with small gap
 - Gain and Energy Resolution Results
 - Outlook
- 2. New Concept: Charge and Light Amplification.
 - → Using MicroMegas with deposit of CsI
 - > First tests
 - > First results measuring electroluminescence with microbulks
 - ➤ Outlook

ββον searches: from the experiments of oscillations we know that neutrinos (v) have finite mass. But there are still open questions about them:

- ☐ Neutrino mass scale.
- ☐ Their nature. Dirac or Majorana.

Experimental Challenge

Big amount of Mass: 100 kg - 1 Ton of ββ emmitter.

Excellent Energy Resolution ≈ 1% at Q_{ββ} energy.

Very Low Background. 10⁻⁴ c/keV/kg/y

- Radiopure Materials.
- Shielding.
- Pattern Recognition.

New Developments with Microbulks Micromegas, L. Segui. M. G. Workshop, m. 6,5LDI, 6-8 November 2011

HP gas TPC

- We can go to higher masses of isotope
- Ionization/scintillation capabilities
- Tracking capabilities in gas
- Not only $\beta\beta0\nu$ but also in DM experiments
- Study of small gap Micromegas: they have better Energy Resolution at higher pressures
- New concept → MMs with CsI on mesh: Scintillation light will give us t₀ and also improves the gain and energy resolution of the microbulks

Scintillation and to

HP gas TPC

- We can go to higher masses of isotope
- Ionization/scintillation capabilities
- Tracking capabilities in gas
- Not only ββ0v but also in DM experiments
- Study of small gap Micromegas: they have better Energy Resolution at higher pressures

New concept \rightarrow MMs with CsI on mesh: Scintillation light will give us t_0 and also improves the gain

and energy resolution of the microbulks

Scintillation and t₀

Old Concept: Electroluminescence New technology: Microbulks + Csl

STUDIES

- Unizar
 - Testing different Xe-mixtures
 - > Testing Microbulks at High pressure Xe
 - ➤ Medium size prototype to register full e- tracks
 - \triangleright Developing background models for a complet $\beta\beta0v$ experiment and discrimination algorithms
- > Saclay more focused on microbulk micromegas developments
 - > 25 μm and 12.5 μm gap micromegas were tested
 - Microbulk with CsI deposit in the mesh
 - ...but also in gas-mixtures (see F.J.Iguaz talk)
 - > Readout and High Voltage performance (electronics. feedthroughs....)
- Active collaboration between both institutes

Topology of $\beta\beta$ 0v signal in a High Pressure **TPC** with Xe at 10bar:

Long track with two high energy deposits at the ends.

Microbulk Micromegas Small Gap

- Microbulk Micromegas of 25 μm and 12.5 μm gap were manufactured at CERN and tested in CEA/Saclay.
- With different geometries for the holes and pitch

Gap	Hole	Pitch
12.5	15	50
12.5	20	65
12.5	25	80
12.5	30	100

Gap	Hole	Pitch
25	15	50
25	20	65
25	25	80
25	30	100

- > Tested in same setup that explained in F.J.Iguaz's talk
- \triangleright P = 1 bar
- Ar-Iso 5% and 10%
- > Fe-55 peak of 5.9 keV

 $25 \ \mu m \ gap$

Arlso5%			
Geom HV Mesh Gain			
20-65N1 300		2.41E+04	
30-100N2	285	1.26E+04	

Arlso10%			
Geom	HV Mesh	Gain	
20-65N1	350	3.74E+04	
20-65N2	330	1.39E+04	
30-100N3	310	1.26E+04	

25 μm gap

Arlso5%			
Geom HV Mesh Gain			
20-65N1	300	2.41E+04	
30-100N2	285	1.26E+04	

Arlso10%			
Geom	Gain		
20-65N1	350	3.74E+04	
20-65N2	330	1.39E+04	
30-100N3	310	1.26E+04	

12.5 μm gap

Arlso5%			
Geom	HV Mesh	Gain	
25-80N1	255	8.35E+03	
30-100N2	280	1.62E+04	

Arlso10%			
Geom	Gain		
15-50N1	305	2.28E+04	
25-80N1	305	2.15E+04	
25-80N2	305	1.04E+04	
30-100N2	325	3.46E+04	

12.5 μm gap

Arlso5%			
Geom HV Mesh Gain			
25-80N1	255	8.35E+03	
30-100N2	280	1.62E+04	

Arlso10%			
Geom	Gain		
15-50N1	305	2.28E+04	
25-80N1	305	2.15E+04	
25-80N2	305	1.04E+04	
30-100N2	325	3.46E+04	

Better E Resolution achieved

16% @ 5.9 keV
in Ar-Iso10% with geometry 30-100

Microbulk Micromegas Small Gap → Conclusions

Conclusions

- Gains higher than 10⁴ with both gaps
- The best energy resolution ~16% with both gaps in Ar-Iso 10%
- Higger gains achieved and better Energy Resolution in Ar-Iso 10%

Outlook

- A new bunch of micromegas with this gaps are being produced reducing some manufacturing problems observed in first bunch → better results expected
- They will be tested as soon as they will be ready
- Test them in other gas mixtures
- Also at high pressure to compare their performance

New Concept: Light and Charge Amplification → Microbulk Micromegas with Csl

Microbulk Micromegas with CsI deposit in the mesh:

- Gap 50 μm; pitch 100 μm. holes diam. 30 μm
- Deposit of CsI by thermal evaporation (CERN): 300 nm thick

New Concept: Light and Charge Amplification → Microbulk Micromegas with Csl

Microbulk Micromegas with CsI deposit in the mesh:

- Gap 50 μm; pitch 100 μm. holes diam. 30 μm
- Deposit of CsI by thermal evaporation (CERN): 300 nm thick

With MMs not only EL light will be detected but also charge → Higher gains observed!

Experimental setup

- ✓ 2 drifts
 - ✓ EL region at 0.3 cm from MMs (~80% transparent)
 - \vec{E} up to 3.7 kV/cm
 - ✓ Drift region at 1.6 cm \vec{E} up to 1.2 kV/cm
- \checkmark P = 1 bar
- ✓ Pure Ar

But

- X Poor quality of gas
- X CsI maybe damaged after few re-opens of chamber. QE decreased.

Physics of the EL light process

- \triangleright α from the ²⁴¹Am ionize Ar atom producing e-'s
- ➤ The e- enters in the scintillation region and excite an Ar atom which emits a photon of 126 nm
- ➤ This photon produces photoelectric effect in the CsI deposit on the mesh and the resulting e-enters through the mesh → avalanche → signal recorded.

Even on this setup a little effect due to the scintillation of the Ar looks to appear!!

NEW SETUP - IMPROVEMENTS

To be sure that we were producing the Ar scintillation:

- ✓ New chamber (vacuum of 10⁻⁴ mbar)
- ✓ Ar high purity (6.0)
 - √ < 0.2 ppm O₂
 - √ Total impurities <1ppm
 </p>
- ✓ Annealing process in the MMs
 - ✓ 58h in Ne flux at 60°C
- ✓ Installation of 3 drifts to be able to revert the field before the MMs and stop the charge

NEW SETUP - IMPROVEMENTS

To be sure that we were producing the Ar scintillation:

- ✓ New chamber (vacuum of 10⁻⁴ mbar)
- ✓ Ar high purity (6.0)
 - < 0.2 ppm O₂
 - ✓ Total impurities <1ppm
 </p>
- ✓ Annealing process in the MMs
 - ✓ 58h in Ne flux at 60°C
- ✓ Installation of 3 drifts to be able to revert the field before the MMs and stop the charge

If we revert the field in last region

- → it stop the e-'s produced in the EL region
- →only gammas from scintillation will pass
- → They will interact with the CsI producing e-s
- → and they will leave energy in the MMs

Scintillation light and charge

 Two different configurations: first with all fields drifting the e-'s to the MMs and the second with the last electric field inverted to stop the charges.

Scintillation light and charge

 Two different configurations: first with all fields drifting the e-'s to the MMs and the second with the last electric field inverted to stop the charges.

Evolution of the signal with the Electroluminescence field

- Mesh gain constant
- Drift and electroluminescence field changed

\vec{E}_{Last}	=	0.45 kV/cm
\vec{E}_{Amp}	=	50 kV/cm

EEL(kV/cm)	Edrift(kV/cm)	Signal
0.78	0.12	62
1.03	0.14	72
1.28	0.15	93
1.53	0.17	115
1.78	0.19	138
2.03	0.21	164
2.28	0.23	190
2.53	0.25	211
2.78	0.26	239
3.03	0.28	258
3.28	0.30	289
3.53	0.32	322
3.78	0.34	371

Scintillation light has a linear dependency with electric field, as shown!!

Now, we are sure we are seeing the scintillation. We install again the setup with just **two drifts** but...

- ✓ In the new chamber
- ✓ Using Ar of high quality

21

Now, we are sure we are seeing the scintillation. We install again the setup with just **two drifts** but...

- ✓ In the new chamber
- Using Ar of high quality
- → Higher Gains observed!!!

With a constant drift field and a constant amplification field in the MMs we obtain a gain curve varying the electroluminescence field

Conclusions

- First tests with a microbulk micromegas with CsI deposit in the mesh
- Electroluminescence light clearly detected
- Gain curve: scintillation regime (linear dependency with electric field) and when the ionization starts (exponential dependency)
- Higher gains obtained with charge and light amplification
 - → we are able to see the X-Rays in pure Ar

Outlook

- Improve the setup with a field cage to collect better the events
- Calibrations with an iron source → gammas from source already detected
- QE measurements at Ar wavelength
- Future tests in Xe and at high pressure
- First steps with a new device, an open field...

THANK YOU

First Tests with a Microbulk with Csl

- Inside TPC Chamber
- Tested in Ar-Iso 5% and in pure Ar
- Constant flux 10 l/h
- \triangleright P = 1 bar

Signals obtained with:

- ✓ UV Lamp
- ✓ Am-241 with a piece of Cu to see its fluorescence (source situated directly in the drift)
- X But just one drift at 2.5 cm (not EL region)
 - $\rightarrow \vec{E}$ up to 480 V/cm. not enough to EL

Evolution with pressure

- We increase the pressure inside chamber to explain distribution on the left
- Data taken each 10 min at same fields conditions

t (min)	Peak
0	371
10	354
20	350
30	346
40	330

\vec{E}_{drift} = 0.35 kV/cm	
\vec{E}_{drift} = 0.35 kV/cm \vec{E}_{EL} = 1.63 kV/cm	
$\vec{E}_{Last} = 5.25 \text{ kV/cm}$	
\vec{E}_{Amp} = 50 kV/cm	

New Concept: Light and Charge Amplification → Microbulk Micromegas wit Csl

Microbulk Micromegas with CsI deposit in the mesh:

- Gap 50 μm; pitch 100 μm. holes diam. 30 μm
- Deposit of CsI by thermal evaporation (CERN): 300 nm thick

First Tests

- Inside TPC Chamber
- Tested in Ar-Iso 5% and in pure Ar
- Constant flux 10 l/h
- \triangleright P = 1 bar

Signals obtained with:

- ✓ UV Lamp → its gammas excite the CsI producing a photoelectric effect that is measured in the MMs
- X But just one drift at 2.5 cm (not EL region)

 $\rightarrow \vec{E}$ up to 480 V/cm. not enough to EL

