Solar axion detection with the CAST experiment

Esther Ferrer Ribas IRFU/CEA-Saclay For the **CAST Collaboration**

> IRFU MPGD 7th December 2011

CAST physics Micromegas developments within CAST Perspectives

Motivation for Axions

- CP violation is necessary in the SM→matter-antimatter asymmetry
- CP violation observed in the weak interactions
- QCD predicts violation in the strong interactions

 $\mathcal{L}_{\theta} = \frac{g^2 \overline{\theta}}{32\pi^2} G^{\alpha}_{\mu\nu} \widetilde{G}^{\alpha\mu\nu} \quad with \quad \overline{\theta} = \theta + Arg(\det M)$

 However no experiment has observed this violation of CP in QCD! •A possible solution to the strong CPproblem

•Elimination of CP-violating term in QCD Lagrangian by introduction of ne additional global U(1) symmetry

$$\mathcal{L}_{a} = \left(\overline{\boldsymbol{\theta}} - \frac{\boldsymbol{a}(\boldsymbol{x})}{\boldsymbol{f}_{a}}\right) \frac{1}{\boldsymbol{f}_{a}} \frac{\boldsymbol{g}}{8\pi} \boldsymbol{G}_{a}^{\mu\nu} \widetilde{\boldsymbol{G}}_{a\mu\nu}$$

- New pseudo-scalar field : **AXION**
- First proposed by Peccei & Quinn (1977)
- Particle interpretation by Weinberg, Wilczek (1978

Axion properties

- Neutral Pseudoscalar
- Pratically stable
- Very low mass $m_a \simeq 0.6 \text{ eV} \frac{10^7 \text{GeV}}{f_a}$

• Coupling to photons

$$L_{a\gamma\gamma} = g_{a\gamma\gamma} (\vec{E} \cdot \vec{B}) a$$

• Possible dark matter candidates

CAST Physics

Production in the Sun

Conversion of thermal photons into axions via Primakoff effect in the solar core

Detection inCAST

Conversion of axions into photons via the inverse Primakoff effect in a strong magnetic field

Expected number of photons:

$$\mathbf{N}_{\gamma} = \mathbf{\Phi}_{a} \cdot \mathbf{A} \cdot \mathbf{P}_{a \to \gamma} \qquad \mathbf{P}_{a \to \gamma} = 1.7 \times 10^{-17} \left(\frac{\mathbf{B} \cdot \mathbf{L}}{9.0 \mathrm{T} \cdot 9.3 \mathrm{m}}\right)^{2} \left(\frac{\mathbf{g}_{a\gamma}}{10^{-10} \mathrm{GeV}^{-1}}\right)^{2}$$

 ≈ 0.3 evts/hour with $~g_{a\gamma}{=}~10^{{\scriptscriptstyle -10}}\,GeV^{{\scriptscriptstyle -1}}$ and A = 14 cm^2

CAST: CERN Axion Solar Telescope

LHC dipole : L = 9.3 m, B = 9 T

Rotating platform : vertical mouvement 16°

horizontal mouvement 100°

Solar « Tracking » ~3 h/day, background data rest of the day

4 X-rays detectors

Originalities of CAST

 Use of X-ray telescope → increase S/B noise→ sensitivity improved by a factor 150 by focusing a Ø43 mm x-ray beam to Ø3mm

• Low background techniques → shieldings, low radioactive materials, simulation and modeling of backgrounds....

Present detectors

	Typical Rates
ММ	2 counts/h (2-10 keV)
CCD+telescope	0.18 counts/h (1-7 keV)

SUNRISE SIDE Shielded Micromegas last generation-Microbulk type

CCD +telescope

SUNSET SIDE: two shielded Micromegas last generation-Microbulk type

CAST PROGRAM AND SENSITIVITY

CAST Phase I: (vacuum operation 2003-2004)

completed (2003 - 2004), m_a < 0.02 eV JCAP 0704(2007) 010, CAST Coll. PRL (2005) 94, 121301, CAST Coll.

CAST Phase II: (buffer gas operation 2005-2011)

⁴He completed (2005 -2006) , 0.02 eV < m_a < 0.39 eV JCAP 0902 (2009) 008, CAST Coll. ³He run completed (2007-2011),0.39 eV < m_a < 1.18 eV

First part ³He run analysis accepted in PRL, Preprint:1106.39119

Original aims of CAST reached! Short term plans for 2012-2015 later in this talk Long terms plans→ see Juanan' s talk

CAST byproducts:

High Energy Axions: Data taking with a HE calorimeter JCAP 1003:032,2010

14.4 keV Axions: TPC data (before 2006) JCAP 0912:002,2009

Low Energy (visible) Axions: Data taking with a PMT/APD arXiv:0809.4581

Micromegas developments within CAST

S. Aune², T. Dafni¹, G. Fanourakis³, E. Ferrer-Ribas², A. Gardikiotis⁴, T.Geralis³, I. Giomataris², H. Gómez¹, J. Gracia¹, D. C. Herrera¹, F. J. Iguaz², I. G. Irastorza¹, G. Luzón¹, T. Papaevangelou², A. Rodríguez¹, J. Ruz^{1,5}, L. Seguí¹, A. Tomas¹, T. Vafeiadis⁶ and S. C. Yildiz⁷

¹Grupo de Física Nuclear y Astropartículas, Zaragoza

² IRFU/SEDI, CEA

³ Institute of Nuclear Physics, NCSR Demokritos, Athens

⁴ University of Patras, Patras

⁵CERN

⁶Aristotle University of Thessaloniki, Thessaloniki

⁷Doğuş University, Istanbul

Sensitivity and background

Low background. How?

-Intrinsic radiopure materials (plexiglas, kapton, copper)

-Protection against external radiations by using shielding (Lead, Copper, Polyethylene, Cadmium)

-Discrimination capabilities exploiting event topology and Statistical offline analysis for optimized discrimination

From 2002-2006

06 08 0 100 120 140 160 180 X channels 1 detector installed in the experiment conventional Micromegas (2D) Low background materials: kapton, plexiglass Electronics for both for the strips (gassiplex) and the mesh (matacq) Trigger with the mesh No shielding

From 2006-2011

- •3 Micromegas detectors installed in the experiment
 •New generation of Microbulk Micromegas (very radiopure materials→see Juanan's talk)
- Shielding

Sunrise side detector

Sunset side detectors

Microbulk

3 Micromegas detectors installed in the experiment Microbulk Micromegas (very radiopure materials→see Juanan's talk) Shielding

New generation of Micromegas: Microbulk

Energy resolution (down to 10% FWHM @ 6 keV)
Low intrinsic background
Low mass detector
Very flexible structure

Calibration: Fe source

Background and tracking

Understanding background: big effort on simulation and Canfranc studies

Juanan's talk

History of Micromegas background in CAST

	Typical rates
TPC	85 counts/h (2-12 keV)
MM	25 counts/h (2-10 keV)
CCD	0.18 counts/h (1-7 keV)
Microbulk	1-2 counts/h (1-7) keV

Thanks to: Shielding +Microbulk technology

Potential for very low background rates

2010 JINST 5 P01009 2010 JINST 5 P02001

Perspectives

Plans for the future: Micromegas detectors performance have motivated an extension of the program

2012: short ⁴He run and R&D for vacuum phase

10 trackings per density step during 3.5 months starting @ 0.415 eV (~15.5 mbar)

- 1) Improvements in detectors background \rightarrow improvement in sensitivity wrt our published results
- 2) At this mass improvement so that the KSVZ axion model benchmark is crossed

R&D in parallel: going further with Micribulk detectors

- Improve radiopurity of construction materials
- Inclusion of new electronics providing 3D information (T2K)
- More compact and full coverage shielding
- Study different gas mixtures to increase the gain

By J.P. Mols

Using T2K electronics : first tests in the lab

- A new program has been created to reconstruct the two 2D view of each event
- The CAST analysis to discriminate low energy x-rays from background has been expanded to the temporal axis.

A low-energy electron viewed by a CAST detector

The CAST-M18 detector shielded with 5 cm of lead

Using T2K electronics: first « fresh preliminary » results

- Strip energy resolution as good as 12% FWHM, (15.4% FWHM obtained with the gassiplex charge)
- Preliminary results with both electronics equivalent
- However, the energy threshold is as low as 700 eV!
- Ne+10%Iso will also be tested

The CAST experiment has achieved its original goal of scanning axion masses up to 1.16 eV (1.18 eV)

□Strictest experimental limit on axion searches for a wide m_a range entering the region most favoured by QCD models

The performance of Micromegas detectors have motivated the extension of CAST and New generation of Helioscope: IAXO

□Very exciting work in the short and long term for Micromegas in this field

VERY! Preliminary analysis plot (2009-2011)

DETECTORS: CCD+telescope

Tracking rate $\approx 1.3 \times 10^{-7}$ events per second per pixel Tracking rate in the spot \approx of 1.4×10^{-7} events per second per pixel

Year	Dates considered	Days of detector operation	Covered trackings from possible ones	Total Detector live time	Total Axion sensitive time
2010	30-08 -> 17-11	73	37/50 (74%)	4235 hours	131 hours
2011	21-03 -> 07-08	121	50/55 (91%)	176.5 days	5.45 days

Extending sensitivity to higher masses

Axion to photon conversion probability:

$$P_{a \to \gamma} = \left(\frac{Bg_{a\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2}\cos(qL)\right] \qquad \text{Vacuum:} \\ \Gamma = 0, \ m_{\gamma} = 0$$

with
$$q = \left| \frac{m_{\gamma}^2 - m_a^2}{2E_a} \right| \quad m_{\gamma}(\text{eV}) = \sqrt{\frac{4\pi\alpha N_e}{m_e}} \approx 28.9 \sqrt{\frac{Z}{A}\rho\left(\frac{\text{kg}}{\text{m}^3}\right)}$$

Coherence condition: $qL < \pi$

For CAST phase I conditions (vacuum), coherence is lost for m_a > 0.02 eV

With the presence of a **buffer gas** it can be **restored** for a narrow mass range:

$$qL < \pi \Rightarrow \sqrt{m_{\gamma}^2 - \frac{2\pi E_a}{L}} < m_a < \sqrt{m_{\gamma}^2 + \frac{2\pi E_a}{L}}$$

e.g. for 50 mbar $\Delta m_a \simeq 10^{-3} \text{ eV}$

RESULTS CCD ⁴He data

Status of ULB (1)

□ Strategy to understand this effect

- Shielding tests at ground in CERN and Saclay
- Shielding tests in the Underground Laboratory of Canfranc
- Simulations of the detector

Intrinsic radioactivity level determined

 $\approx 2x10^{-7}$ counts keV⁻¹ s⁻¹ cm⁻²

Status of ULB (2)

Dominant contribution of gammas coming from the aperture of the shielding

□Increasing the shielding, especially on the pipe=> reduction of the background

ULB not yet understood

□ Significant research is underway

□ Promising results to continually reduce the backgrounds in future detectors

Roadmap of tests/development to explore ideas and consolidate lower backgrounds

First science results from ³He

2012: detectors

SUNRISE	SUNSET	
CCD +Telescope (unchanged) Micromegas (unchanged)	Micromegas 1 (replaced) Micromegas 2 (replaced)	Shielding upgrade
BARBE (increase field of view)		

Sunset shielding upgrade design:

Micromegas tasks during shutdown

Background tests

Calibrate detectors with the X-ray gun in the CAST detector laboratory

Build and install the shielding

2012: R&D in parallel (1)

- 1) Develop thin transparent windows to search in parallel for other WISPs (chameleons and hidden sector paraphotons)
- 2) A next-generation framestore pn-CCD detector is being tested
- 3) Finalise new design of Micromegas detectors in order to reach levels approaching 2x10⁻⁷counts keV⁻¹ s⁻¹ cm⁻² with lower energy threshold
- 4) Develop new optics to be coupled to Sunrise Micromegas
- 5) TES based detector tests on the BaRBE line?

1) Thin transparent windows

- Nanotubes materials :
 - base material Al₂O₃
 - fraction of incident photons can be transmitted directly or channeled through pores
 - test of windows at DESY
- Feasability for Kapton based using Microbulk techniques → honeycomb

CAST Microbulk manufacturing

Kapton foil (50µm), both sides Cu-coated (5µm)

Construction of readout (strips/pads)

Added a single-side Cu-coated kapton foil (25/5)

Construction of one direction readout lines

Vias construction by etching the kapton

Construction of the second direct readout lines and vias

Photochemical production of mesh holes

Kapton etching and cleaning

