

Recent results from the T2K experiment

Edoardo Mazzucato, CEA Saclay

MPGD Irfu Workshop, Saclay, December 6th-8th, 2011

T2K: Tokai to Kamioka

A long baseline neutrino oscillation experiment

- Well established now that neutrinos have non-zero masses since they oscillate
- Flavor eigensates $(v_e, v_\mu, v_\tau) \neq \text{mass eigenstates } (v_1, v_2, v_3)$
- Neutrino oscillations described by ∆m²_{ij} = m_j² m_i² and the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

T2K goal is to measure precisely $P(v_{\mu} \rightarrow v_{\mu})$ and $P(v_{\mu} \rightarrow v_{e})$

$$\begin{bmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = U_{PMNS} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

Neutrinos raise many other questions: What are their absolute mass? Dirac or Majorana particles? Is CP violated in the leptonic sector? Are neutrinos faster than light?

Neutrino mixing

atmospheric

$$\begin{bmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix}$$

$$\begin{bmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \times \\ \begin{bmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} \, e^{-i\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13} \, e^{-i\delta_{CP}} & 0 & \cos\theta_{13} \end{bmatrix} \times \\ \begin{bmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \times \\ \begin{bmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{bmatrix}$$

$$\begin{bmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ \sin\theta_{12} & \cos\theta_{13} & 0 \end{bmatrix}$$

solar

$$\begin{vmatrix}
\cos\theta_{12} & \sin\theta_{12} & 0 \\
-\sin\theta_{12} & \cos\theta_{12} & 0 \\
0 & 0 & 1
\end{vmatrix} \times \begin{vmatrix}
v_1 \\
v_2 \\
v_3
\end{vmatrix}$$

v oscillations governed by 6 parameters : θ_{12} , θ_{23} , θ_{13} , Δm_{12}^2 , Δm_{23}^2 and δ_{CP}

$$\theta_{23} \sim 46^{\circ} \pm 4^{\circ}$$

 $|\Delta m^{2}_{23}| \sim (2.4 \pm 0.1) \times 10^{-3} \, eV^{2}$
(SK, K2K, MINOS, T2K)

$$\theta_{13}$$
 < 11° at 90% CL (CHOOZ)
T2K, MINOS, DCHOOZ:
indication of θ_{13} > 0!

$$\theta_{12} \sim (33.6 \pm 1.1)^{\circ}$$

 $\Delta m^{2}_{12} \sim (7.6 \pm 0.2) \times 10^{-5} \text{ eV}^{2}$
(SNO, KAMLAND)

T2K goals:

• Measurement of the mixing angle θ_{13} through v_e appearance:

$$\text{P ($\nu_{\mu} \rightarrow \nu_e$)} \approx \text{sin}^2(2\theta_{13} \text{)} \text{sin}^2\theta_{23} \text{sin}^2(1.27\Delta\text{m}^2_{31} \text{ L/E}_{\nu})$$

Expected sensitivity with full T2K proposal statistics $(3.75 \text{ MW} \times 10^7 \text{ s})$

 $\delta(\sin^2(2\theta_{13}) \sim 0.008 \text{ at } 90\% \text{ C.L.}$

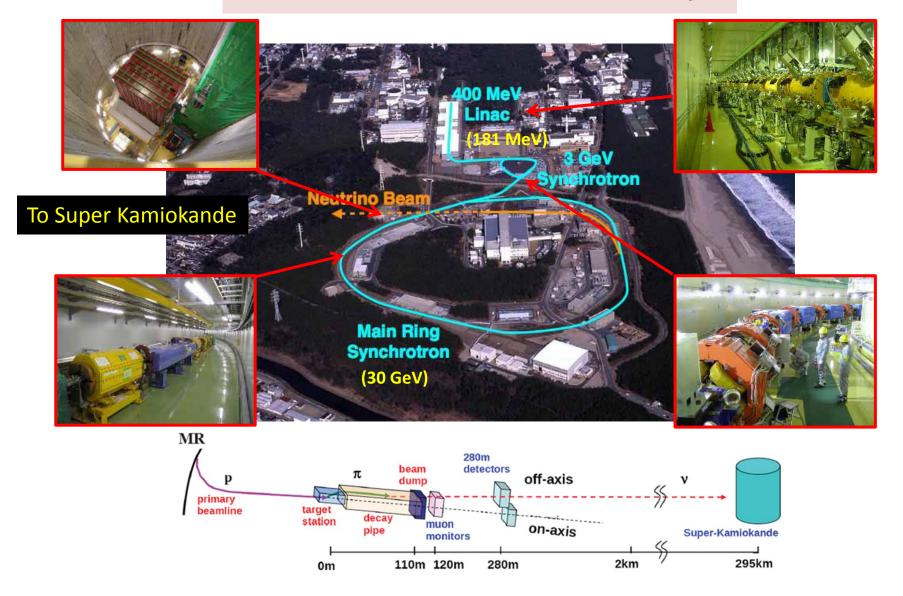
A non-zero value of θ_{13} would open the road to future investigations of leptonic CP violation (δ_{CP}) and the mass hierarchy problem

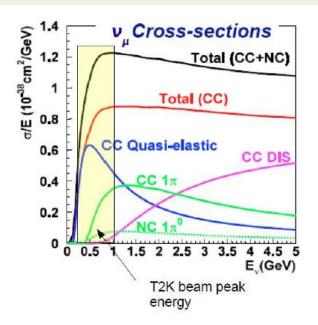
• Precision determination of θ_{23} and Δm^2_{23} by observing v_{μ} disappearance:

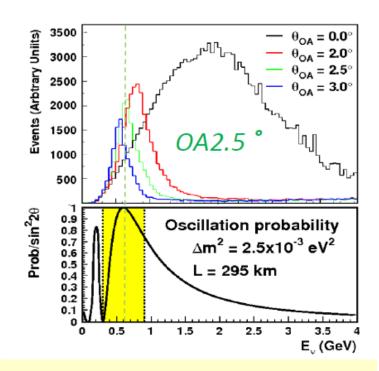
P (
$$\nu_{\mu} \rightarrow \nu_{\mu}$$
) $\approx 1 - \sin^2(2\theta_{23}) \sin^2(1.27\Delta m_{23}^2 L/E_{\nu})$

$$\delta(|\Delta m^2_{23}|) \sim 1 \times 10^{-4} \text{ eV}^2$$

 $\delta(\sin^2(2\theta_{23})) \sim 1\%$

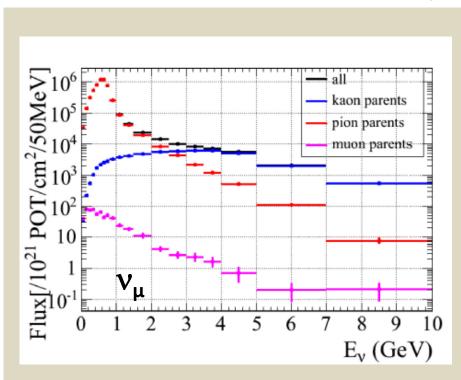

The T2K Collaboration

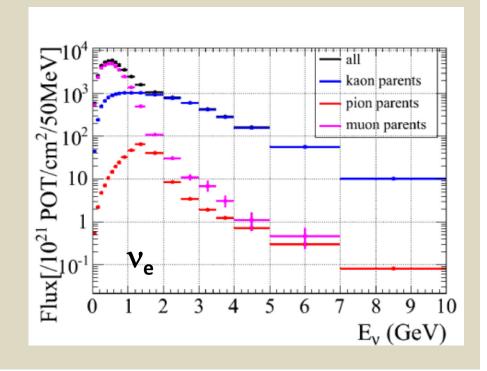

~ 500 members, 59 national institutes, 12 countries


J-PARC neutrino facility

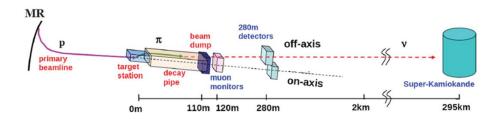
Off-axis technique

- The T2K detectors are located 2.5° w.r.t. beam axis
- Off-axis technique gives a narrow v spectrum peaked at ~ 600 MeV
- Optimized energy spectrum for maximal oscillation probability
- Small v_e contamination

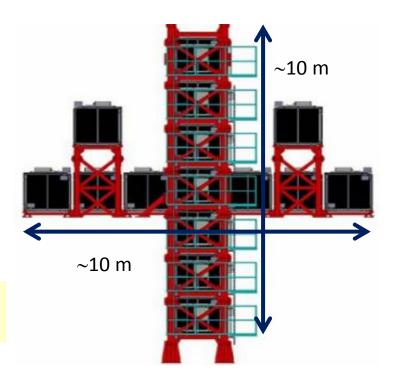

 Below 1 GeV, charged current interactions are dominated by quasi-elastic process (CCQE)

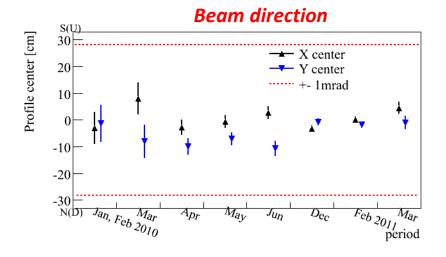

$$v_1 + n \rightarrow p + l^-$$
 (I = e, μ)

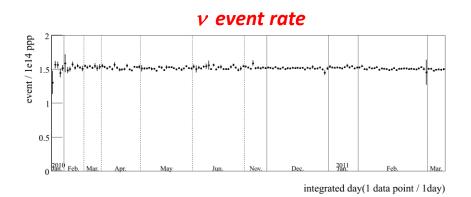
- E_v precisely determined from the lepton momentum vector
- Small energy tail reduces contributions from other processes (NC, CC1 π , DIS ...)


Neutrino fluxes at SK

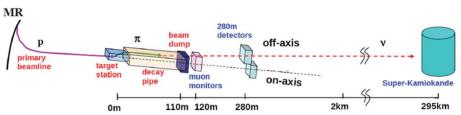
Predictions based on NA61 (CERN) pion production data + FLUKA

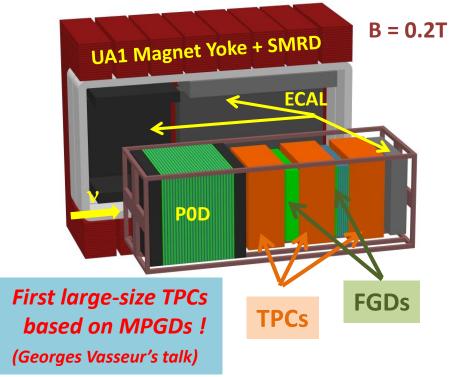


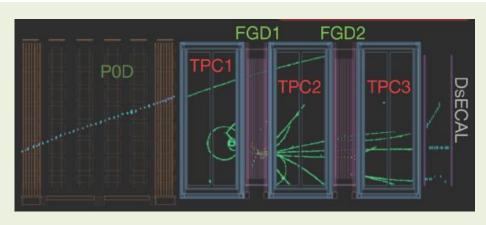

INGRID on-axis detector



Monitors the *v* beam direction and intensity

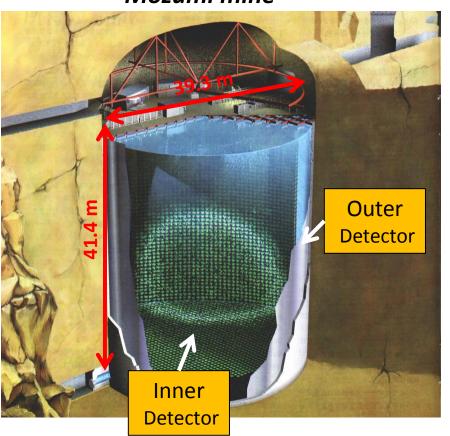

- 16 iron/scintillator modules (7.1 tons of iron /module)
- physics requirement for beam direction stability < 1 mrad</p>




ND280 off-axis

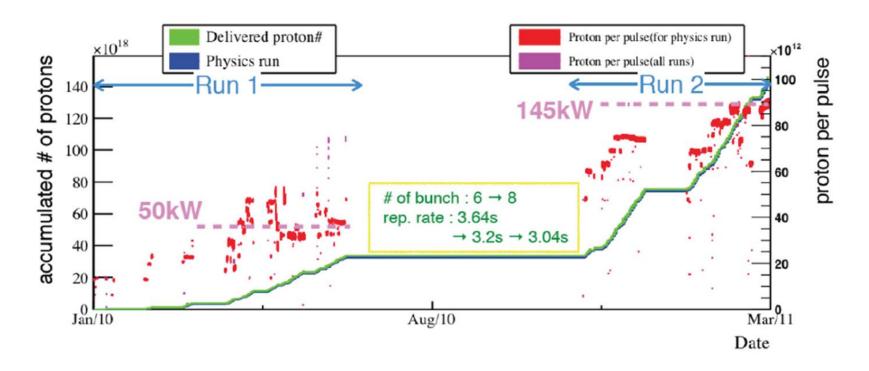
Measurement of:

- energy spectrum and flux of v beam
- v_e contamination in the beam
- rates for exclusive v interactions (CCQE, CC1 π , NC, DIS, ...)



- ND280 Tracker provides the most accurate measurement of the v energy spectrum from CCQE events.
- Particle Identification (e, μ , π , p)

Far detector: Super-Kamiokande (SK-IV)


Mozumi mine

- 50kT Water Cerenkov detector
- Fiducial volume: 22.5kT
- Inner (ID) and Outer (OD) Detectors separated optically
- Inner Detector (ID):
 - 11129 PMTs (ϕ =20in)
 - 40% coverage
- Outer Detector (OD):
 - 1885 PMTS (ϕ =8in)
- SK-IV running since Sept. 6th / 2008 with new front-end electronics
- Excellent e/μ separation (< 1%)

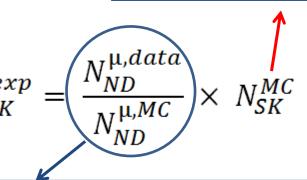
SK typical events Good e/µ separation **Sharp** ring « Fuzzy » ring Good $\pi^0 \rightarrow 2\gamma$ rejection Background for v_e appearance: « Fuzzy » - intrinsic v_e component in the beam rings - merged π^0 rings in NC interactions

Data taking

- Data taking for physics started in January 2010 and ended on March 11th, 2011 due to the earthquake.
- At the end of Run 2, stable operation at 145 kW was achieved.
- Run1 + Run 2 total dataset : 1.43 x 10²⁰ POT (protons on target). This amount of data represents ~2% of the T2K proposal goal.

Oscillation Analysis Strategy

 To measure appearance/disappearance probabilities, need to compute the expected number of events at SK

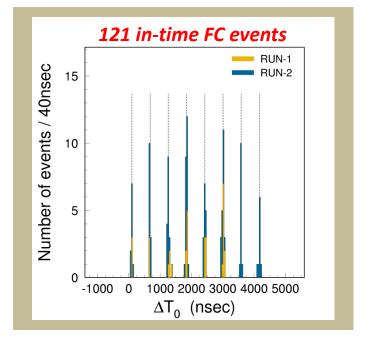

 Use ND280 off-axis detector as normalization to reduce systematics from beam flux,

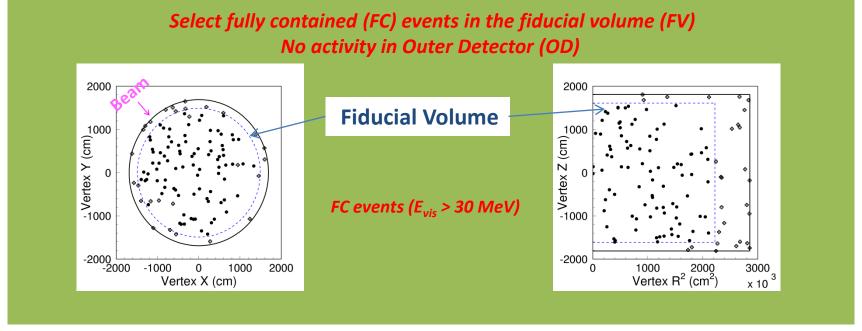
v cross-sections

Expected number of events at SK

Number of events at SK computed by Monte Carlo

(depends on beam flux, cross sections, input oscillation parameters, detector efficiencies ...)


Measurement of v_{μ} inclusive CC interactions in the ND280 Tracker from Run 1


$$\frac{N_{ND}^{\mu,data}}{N_{ND}^{\mu,MC}} = 1.036 \pm 0.028(stat)^{+0.044}_{-0.037}(syst) \pm 0.038(phys.\,model)$$

ν_{μ} disappearance

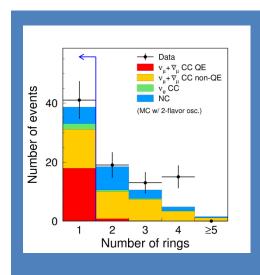
v_{μ} selection at SK

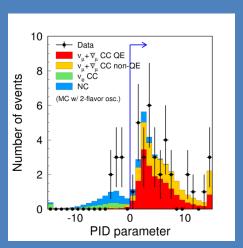
- Selection cuts tuned using MC and atmospheric data
- Time cut: -2 to +10 µs window on GPS time, synchronized between J-PARC and SK

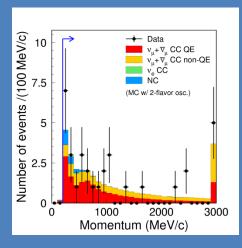
Enriched sample of CCQE ν_{μ} interactions

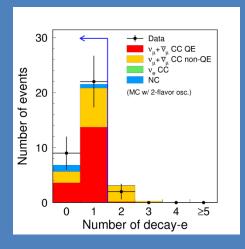
MC events normalized to POT

 $\sin^2 2\theta_{23} = 1.0$, $\Delta m_{23}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

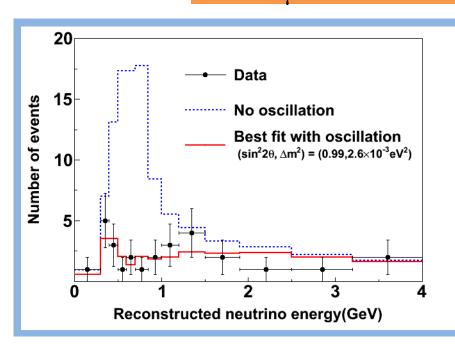

	2 = 23 = 23 = = 0									
		M	MC							
	Data	Total	v_{μ} CCQE	ν _μ CC non-QE	$v_{\rm e}$ CC	NC	w/o osc.			
Interaction in FV	-	141	24.0	43.7	3.2	71.0	243			
FCFV	88	74.1	19.0	33.8	3.0	18.3	166			
Single-ring	41	38.7	17.9	13.1	1.9	5.7	120			
μ-like	33	32.0	17.6	12.4	< 0.1	1.9	112			
$P_{\mu} > 200 \text{ MeV/c}$	33	31.8	17.5	12.4	< 0.1	1.9	111			
N(decay-e) ≤1	31	28.4	17.3	9.2	< 0.1	1.8	104			
Efficiency	-	20 %	72 %	21 %	0.4 %	3 %	43 %			

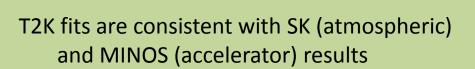

31 remaining events after all cuts

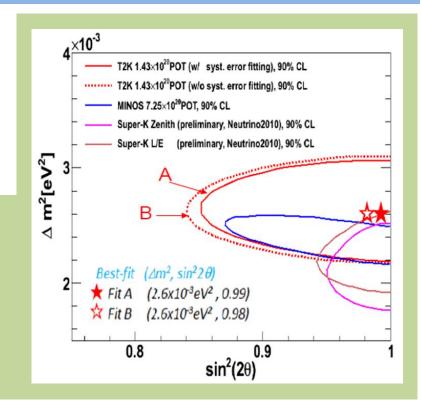

CCQE efficiency: 72%


• CCQE purity: 61%

Expect 104 ± 17 events if no oscillation!




v_{μ} disappearance results

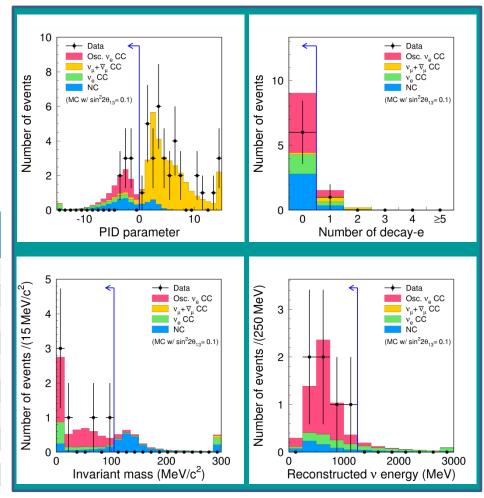

Disappearance clearly observed in the ν energy distribution.

Shows power of off-axis technique!

No oscillation hypothesis excluded at 4.5 σ

Publication in preparation

ν_{e} appearance

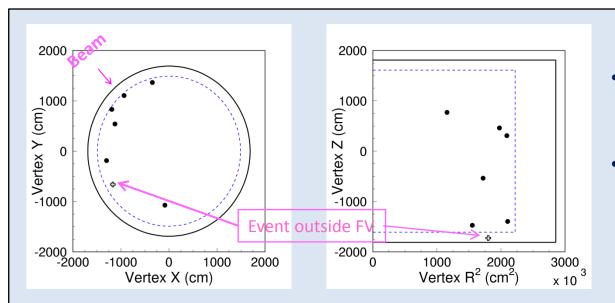

v_e selection

$$|\Delta m_{23}^2| = 2.4 \times 10^{-3} \text{ eV}^2$$
, $\sin^2(2\theta_{23}) = 1 \text{ and } \delta_{CP} = 0$

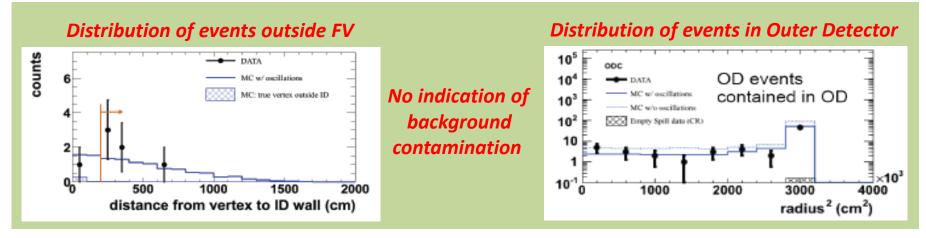
Expected
$$N_{SK}$$
 for $\sin^2 2\theta_{13} = 0.1$

	Doto		$\nu_{\mu} \rightarrow \nu_{e}$				
	Data	Total	v_{μ} CC	ν _e CC	NC	expect.	
Interaction in FV	-	141.3	67.2	3.1	71.0	6.2	
FCFV	88	73.6	52.4	2.9	18.3	6.0	
Single-ring	41	38.3	30.8	1.8	5.7	5.2	
e-like	8	6.6	1.0	1.8	3.7	5.2	
E _{vis} > 100 MeV	7	5.7	0.7	1.8	3.2	5.1	
No decay-e	6	4.4	0.1	1.5	2.8	4.6	
$M_{inv} < 105 \text{ MeV/c}^2$	6	1.9	0.04	1.1	0.8	4.2	
$E_{\nu}^{\rm rec}$ < 1250 MeV	6	1.3	0.03	0.7	0.6	4.1	
Efficiency	-	1%	< 0.1 %	23 %	1%	66 %	

6 candidate events pass all cuts



Expected number of events for $\sin^2 2\theta_{13} = 0$:


$$N_{SK}$$
 = 1.5 \pm 0.3 (syst) events

 v_e contamination in the beam measured at ND280 to be < 2% at 90% C.L.

Vertex distribution

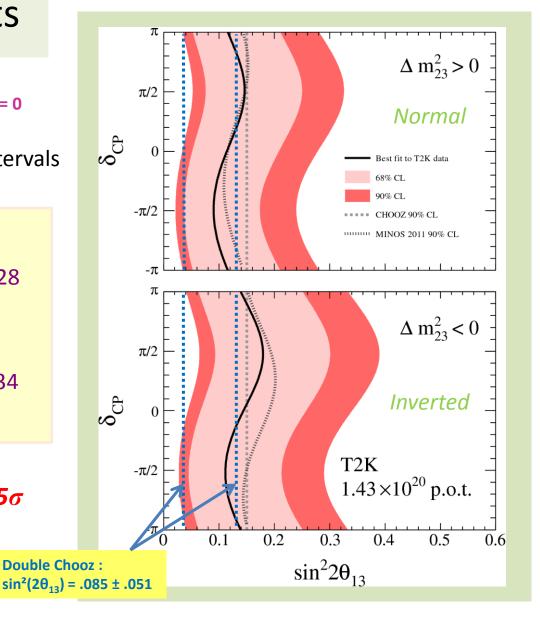
- The candidate events are located at large R
- A Kolmogorov-Smirnov test gives 3% p-value for such a R² distribution

v_e appearance results

$$|\Delta m^2_{23}| = 2.4 \times 10^{-3} \text{ eV}^2$$
, $\sin^2(2\theta_{23}) = 1$ and $\delta_{CP} = 0$

90% C.L. (Feldman-Cousins method) intervals and best fit values :

Normal:


$$0.03 < \sin^2(2\theta_{13}) < 0.28$$

 $\sin^2(2\theta_{13}) = 0.11$

Inverted:

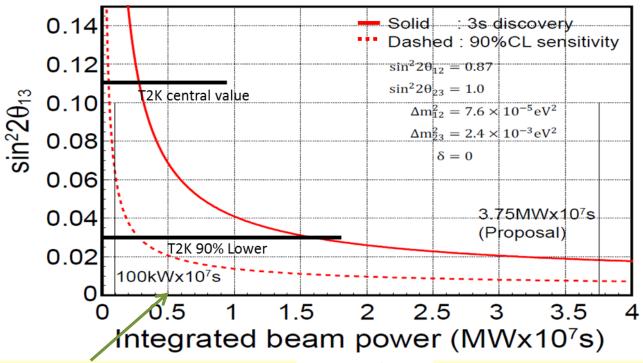
$$0.04 < \sin^2(2\theta_{13}) < 0.34$$

 $\sin^2(2\theta_{13}) = 0.14$

Null oscillation disfavored at 2.5 σ

Published in Phys. Rev. Lett. 107 041801 (2011)

Near future of T2K


- > J-PARC has now recovered from March 11th earthquake.
- No serious damage to the accelerator and the ND280 detectors. SK not affected at all.
- Accelerator status :
 - Magnets and beam monitors have been re-aligned.
 - Beam commissioning will start next week.
 - Goal is to restart at 100 kW.
- ND280 status:
 - Detectors under maintenance.
 - All sub-detectors have been tested sucessfully.
 - Magnet open until end of the year.
 - Commissioning will start early in January 2012.

Data taking for physics should resume by end of January 2012

Expected sensitivity to $\sin^2 2\theta_{13}$

Milestone : 10^{21} POT (~ 500 kW $\times 10^{7}$ s) by summer 2013

Exclusion of $\theta_{13} = 0$ at 5σ at the best fit value of $\sin^2(2\theta_{13}) = 0.11$

The main goal of T2K is the determination of θ_{13}