

T2K / TPC detector

Workshop IRFU MPGD Saclay, December 6, 2011

Georges Vasseur CEA, IRFU, SPP, Saclay

The T2K experiment

JPARC Facility at Tokai

SupeKamiokande 250 kTon Water Cherenkov Detector

- Long Baseline Neutrino oscillation experiment.
- 30 GeV proton accelerator used to produce a v_{μ} beam sent from Tokai to SuperKamiokande.
 - Baseline L = 295 Km
 - Peak neutrino energy $E_v \sim 0.6 \text{ GeV}$
- v_e appearance \rightarrow First measurement of θ_{13}
- v_{μ} disappearance \rightarrow Precise measurement of θ_{23} and Δm_{32}^2

ND280 in T2K experimental setup

- Off Axis Near Detector ND280 at 280 meters from the neutrino beam production target.
- Characterize the neutrino beam before oscillation:
 - Measure v_{μ} energy spectrum.
 - Measure v_e intrinsic contamination in the beam.
 - Measure cross-section of background process to oscillation signal (NC π^0).

The Near Detector ND280

- Several detectors inside a magnet (with a field of **0.188 T**)
 - 2 FGDs: active target (1 t each) for the tracker, scintillator based (plus water in FGD 2),
 - 3 TPCs: tracking and PID,
 - P0D: scintillator bars interleaved with lead and brass sheets and water bags (π⁰),
 - ECAL: scintillator planes with radiator (EM showers).
 - SMRD: scintillator planes in magnet yoke (high angle muons).

The Time Projection Chambers

3 large TPCs with central cathodes.

- Tracking length: 72 cm (per TPC).
- Long drift distance: 90 cm (x2).
- Active height: 200 cm.
- Total active area: ~9m².
- Requirements:
 - δp_t/p_t < 10% @ 1GeV to reconstruct neutrino energy spectrum.
 - Absolute momentum scale smaller than 2% (for Δm_{32}^2 measurement).
 - dE/dx resolution better than 10% to separate electrons from muons.

Mechanical structure

- E-field shaped by copper strips
 - Cathode flatness: 0.1 mm.
 - Module plane planarity: 0.2 mm.

 Service spacer (cooling, HV connections, electronics, temperature probes, ...).

Gas

- Gas mixture in the inner drift volume:
 95:3:2 Argon:Freon:Isobutane.
- Gas properties:
 - Low transverse diffusion: 250 μ m/ \sqrt{cm} .
 - Large drift velocity: 7.5 cm/µs.
 - Few impurities : $O_2 < 2$ ppm.
- Two small TPCs monitor the supply and return gas (gain, drift velocity, ...).
- Outer volume filled with CO₂.

Micromegas detectors

- Ionization of the gas by charged particles crossing the TPC.
- Electrons drift to the Micromegas mesh.
- Avalanches generated in the amplification region.

Micromegas module

- Bulk-Micromegas technology
 Nucl. Instrum. Meth. A560, 405 (2006)
- 12 modules on each endplate
 → 72 modules in 3 TPCs
- Each module (35 x 36 cm²) has 1726 active pads (6.9 x 9.7 mm)
- Total of ~120 000 channels
- MM modules were produced at CERN/TS-DEM-PMT

Readout electronic

- FEE based on asic AFTER (72 channels) with programmable:
 - maximum charge (120 600 fC): 120 fC
 - peaking time (100 2000 ns): 200 ns
 - sampling frequency (up to 100 MHz) : 25 MHz
- 6 FEC + 1 FEM on each module.
- Data from 72 modules sent by optic fibers to 18 DCC and then to DAQ.

Front-End Card (FEC)

Front-End Mezzanine (FEM)

Micromegas tests at CERN

- Characterization of each module with a ⁵⁵Fe source emitting 5.9 keV photons.
- Results within a module:
 - Energy resolution: 6% dispersion
 - Gain uniformity: 3% dispersion

Laser calibration system

• UV laser:

- 266 nm UV light.
- Brought through a set of optical fibers.
- Target pattern: aluminum discs and strips glued on cathode.
- Study of:
 - E- and B-field distortions
 - Gain variations
 - Drift velocity

Milestones

- 2007-2009: production and construction phase in Canada and Europe.
- 2008-2009: assembling of the TPCs and tests with beam at TRIUMF.
- Oct 2009 Jan 2010: commissioning of the 3 TPCs at J-PARC
- Jan 2010 Jun 2010: first T2K physics run.
- Nov 2010 Mar 2011: second T2K physics run.

Event displays

 Deep inelastic scattering candidate with an additional through going track.

 Charged current quasielastic neutrino interaction candidate.

Operation

Nearly 100% live fraction during beam time.

- Spark rate per module < 0.1/h (at 350 V).</p>
- FEE LV consumption: 2.8 kW.
- Rate of TPC data to DAQ: < 2MB/s (at 20 Hz).</p>
- Monitoring many quantities: gain, gas density, gas quality, drift velocity, temperatures, voltages and currents.

Gain stability

- Gain variations mainly due to temperature and pressure changes.
- Gain stability within 1% after T and P corrections.

Spatial resolution

- Clusters formed from neighboring pads within a column (horizontal tracks) or a row (vertical tracks).
- Spatial resolution estimated by comparing coordinates from global track fit with single cluster fit.
- Spatial resolution of 600 µm for horizontal tracks.

Field distortions from laser data

- E-field distortions from observed offsets w.r.t. survey:
 - RMS values smaller than point resolution.
- B-field from comparing measurements with and without magnetic field:
 - Offset typically less than 1 mm, reaching 5 mm at maximum.

Displacement of target images when magnet is turned on (×10)

									۰,	•	٩.		1
в.,	۰.		8.			я.	2	*	7	٠	. 1	*	1
*					*			1.00	-	1.0			1
1			1.1								1.1	1	1
					- 5					- 7		-	-
			•	•				*				-	~
•	•		•	•	*		2						-
2											-	-+	-
	-	-	-		-		.8	-4	-8	-8			-
			-	-4	**		-	-*	~	-			
*			-	-	æ	-	1						-
2		20				-	17	1	-	-	-	-	-
	_	1		1	-7	-	-		-	-		-	-
	-	-	-		-*		-	-*	-	~	-	-	-
	.4	-4	-4	-*	-4	-*	5		-	-		-	-
2	-	-				-	-	-	-	-	-	-	-
-	-	-	-	-	-	-		-	-		-		C.
		.4			.4		-	-	-	1	هر.	200	1
-	-	-*	+			-	-	1			-		1
*						*	-	~	-	~	~	1	~
	-	-		*	~	-	-*	.*	2	~	1	~	1
-			.4		٠		<i></i>	.*	,0	1	1	1	1
*	-				*		1					_	1
*	3	20	120	225	83	.*	2	1	1	1.	1.	1.	1.
1	-		-	1	1		-	5	-	-	1.	1	1.
-	-	1	1	- 2	- 2	5	1		1	2	1	1	12
		-		5	2	5	1	1	-	-	1	1	+
					23	1	P	1	P	2	1	1	1
	*	*	*	*	+	*	1	1	1	1	1	1	1
							1	1			1	10	1.
					,		×	100	-	1	1	1	14
٠						*	1	1	1	1	1	1	18
		*	ŵ	*	.#	7	0	1	1	- 2	1.	12	1
2			-	-	0	1		4	14	- 4	1.	14	1
	1	1	- 2	- 2	- 2	- 2	4	1	1	1	1	1	4
		1	-	1	1	5	-	7	7	*	1	1	1
						-			÷.		· .	19	· .
					,					1	1.	14	1.
									0	1	1	1	je.
-	0.00	1	100				*	1	2	2	1	+	1
*								1	1		2	7	17
*					*			P		۴	1	7	19
*	•	*	-				1		1		1	7	Z
2			-			1	2						10
-			+		*	-			-	-	1	4	
-	4	-	-	-		-	1		-	-	-	4	1
1	1	-			-	1	-	-0	1	1	1	1	4
3	*	-	-	-+	+	-							
1	2	~	14	-	-	-	-	-	-		10	-	1
	×	1	-	-	-	-							

Momentum resolution and PID

- Measured spatial resolution is sufficient to reach required momentum resolution (from MC study).
- Measured resolution on dE/dx on data meets requirement.
- Truncated mean method.

Tracks in beam data

- The TPC, measures:
 - Sign of charge
 - Momentum
 - Energy loss

Negatively charged tracks

Positively charged tracks

Muon misidentification

- To measure the v_e beam component, need to select electrons and reject muons.
- Control sample of sand muons crossing the 3 TPCs.
- Misidentification probability of the order of few per thousand.

Current hardware situation

- The T2K data taking was stopped by the earthquake on March 11, 2011.
- For the TPC, the gas system, cooling, FEE, BEE, HV for cathodes and micromegas modules were all powered up successfully at the end of May 2011.
- After re-alignment, the accelerator will be recommissioned in December 2011.
- Start of new physics run in January 2012.

Conclusions

- The three T2K ND280 TPCs have been operating successfully during the first two physics run from January 2010 to March 2011.
- They will be ready for the next T2K physics run foreseen for January 2012.
- They are contributing in an essential way to T2K physics results.
 See Edoardo Mazzucato's talk.
- More information on the TPCs can be found in our publication.
 Nucl. Instrum. Meth. A637, 25 (2011).