Ageing studies of resistive-anodes Micromegas for HL-LHC

D.Attié, M.Boyer, G. Cauvin, J.Derré, E.Ferrer-Ribas, J. Galàn, A.Giganon, I.Giomataris, P.-F. Giraud, S. Herlant, F.Jeanneau, J. Manjarrés, Ph.Schune

on behalf of MAMMA collaboration

Resistive-anodes prototypes

Detectors manufactured @ CERN workshop by R. de Oliveira and lent by J. Wotschack

X-rays irradiation setup

X-rays irradiation simulates the total charge accumulated by the detector on a long-time operating period

Operating conditions	
Gas mixture	Ar+10% CO ₂
Gas flow	I renewal per hour (0,5 l/h)
Gain	~ 5000

Detector is exposed only in an area of 4 cm² in order to have a controlled exposed region.

First irradiation period

Equivalent charge generated during 5 years at HL-LHC

- Maximum expected rate in the region near the beam pipe: 10 kHz/cm²
- 1000 days of operation (200 days/yr)
- Detector parameters:
 - Ionization potential \rightarrow W_i (Ar/10% CO₂) = 26,7 eV
 - Gain \rightarrow 5000
 - MIP energy deposition in 0,5 cm conversion gap → 1250 eV

First conclusion

No ageing visible after more than 5 years of HL-LHC BUT An increase of almost 50% on the whole period

Possible explanations:

- Curing of the resistive material
- X-strips (copper) were not grounded → charging effect?
- Gas mixture (outgasing, pollution, ...) \rightarrow no <u>reference</u> detector

Second irradiation period

- Irradiation in another area of the detector \rightarrow the mask is just flipped
- Copper X-strips are properly grounded (endcaps)
- Gain of the reference detector (R17) is regularly controled in order to check the gain variations due to (P,T) effect or to gas mixture pollution.

Gain stability check

Gain is measured on both detectors before, during and after the irradiation period at several positions.

No gain change in the exposed area

/

Neutron irradiation

Neutron irradiation near Orphée reactor @ Saclay

- Neutron flux ~ 8.10^8 n/cm²/s
- Cold neutrons: 2 to 10 meV
- Same setup: gas, current monitoring, RI7A and B, ...

Neutron ageing

- Neutron flux (CSC in ATLAS)
- I0 years at HL-LHC (200 d/yr)
- Security factor
- 5 x lum. Nominale (LHC)
- we will accumulate
- One hour at Orphee G3.2

 $\rightarrow \sim 3.10^4 \text{ n/cm}^2/\text{s}$

$$\rightarrow x3$$

 $\rightarrow x5$ (BdF)

$$\rightarrow$$
 8.10¹³ n/cm²

 \rightarrow 3.10¹² n/cm²

\rightarrow or 4/5 monthes of HL-LHC

Conclusion

- Good ageing behaviour:
 - More than 21 days under X-rays irradiation (integrated charge ~ 1 C)
 → 5 years equivalent of HL-LHC with a security factor more than 5
 → No ageing !
 - Neutron irradiation for 40 hours in intense cold neutrons beam
 - ightarrow current and gain remain stable, no degradation visible
 - ightarrow More investigations after total desactivation of the detector
- <u>New x-rays irradiation</u> is probably necessary to understand the increasingcurrent effect
- Neutrons irradiation are still going on:
 - Different configurations with AI and B_4C showing that main activation is coming from the aluminium (material study is necessary for the housing of the future multi-layers)
 - Samples of resistive layers will be also irradiated
- <u>Gamma irradiation</u> near COCASE is under study (500 mGy/h maximum)