Inclusive Search for Squarks and Gluinos
using the Razor Kinematic Variable
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Overview

e SUSY searches using traditional variables involve
searching for an exponentially falling signal on
exponential background

* The razor variables separates the signal region
from the background region turning the search
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R-frame: e The slope of the scaling in R?is the same as that for the scaling in M

Longitudinally boosted _ _
* \We observe that the same type scaling occurs for each SM process with

different parameters dependent on the process
* The equivalence of the slope parameters is observed for all processes

* We use this to construct a 2D function that analytically describes the full
R*-M,, distribution and recovers the 1 dimensional scaling after integration
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iIn R and M, dedicated triggers are used
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These triggers compute the variables R and M, in Lo s
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In order to fully cover the signal and sideband VI * No significant excess over the Standard Model background is observed
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* The razor variables are designed with dijet final states in mind, thus we cast . T g (12507 tanB=10, A =0, u>0 |
J J We set limits in the (m, m,,) Razor 800 pb-

multijet final states into a dijet topology plane for the CMSSM model for

* All jet-like objects are grouped into 2 hemispheres which are used at tan (B)=10
“megajets” in the computation of the razor variables thus enforcing the
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* These results extended the
current LHC limits significantly
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