

Ds + production at central rapidity in pp collisions at 7 TeV with the ALICE experiment

G.M. Innocenti for the ALICE Collaboration

University & INFN, Torino, Italy

Hadron Collider Physics Symposium, November 14-18 2011 Paris, France

Physics Motivation for D+s analysis

 $D^+_c \rightarrow \Phi \pi^+ \rightarrow K^+ K^- \pi^+ \quad m(D^+_c) = 1.968 \text{ GeV} \quad c\tau = 147 \text{ } \mu m$

In pp collisions

- . D+ meson p, differential cross section is an important test for perturbative QCD calculations
- Measurement of the fraction of charm that goes in D+s
- Reference for heavy-ion collisions

In A-A and p-A collisions:

- . Study of hadronization mechanisms
- D*_s/D* ratio (fragmentation and recombination)
 Initial state effects such as modification of the PDF inside the nuclei, parton saturation and Cronin effect
- Final state effects such as parton energy loss and anisotropic

Reconstruction Strategy

The analysis strategy is based on an invariant mass analysis of fully reconstructed decay topologies originating from displaced vertices

- Single track transverse momentum and impact parameter
- Track combination with proper particle charges
- · Secondary vertex reconstruction
- Selection of candidates with topological cuts based on primary and secondary vertex separation and pointing of D momentum
- · Particle identification of the decay products

- TPC : Particle identified if its energy loss is compatible with a given specie Bethe Bloch within No
- time-of-flight is compatible (within $N\sigma$) with the values expected assuming kaon mass

Several selection on cut variables are then applied to reduce the large combinatorial background:

- $\bullet \;\;$ Distance between primary and secondary vertex $d_{\rm ps}$ (e.g. $d_{ns} > 300 \, \mu m$)
- Cosine of the angle between the reconstructed D meson and the D flight line $\mathsf{Cos}\theta_p$, (e.g. $\cos \theta_0 > 0.95$)
- Invariant mass of the ϕ reconstructed meson
- Dispersion of the secondary vertex
- Selections related to the angle between the momenta of the D+s and its decay products

PID is crucial for D+s analysis due to the presence of two Kaons in the final state

Cut variables , Data vs. MC

Data-MC comparison for the distribution of D*_S events as a function of Cosθ_p (left) and decay length (right) performed with loose analysis cuts

Good agreement between Data and MC

Invariant mass spectra

spectra in four transverse momentum ranges from 2 to 12 GeV/c obtained with the simum bias statistics (\approx 298 millions of events)

p_t differential cross section $D_S^+ \rightarrow K^+K^-\pi^+$ in pp, |y| < 0.5

prompt D⁺s meson and D⁺s from B de

Preliminary pt differential cross section B-feed down corrections estimated using FONLL

D+c systematic uncertainties as a function of p.

Ratio between p, differential cross section D+s /D+ and D+s /D0 . p, integrated values are also shown

ALICE Preliminary, pp, \(\sigma = 7 \) TeV

ALICE Prelim. (tot. unc.)
 p>2 GeV/c, lyl<0.5
 LHCb Prelim. (tot. unc.)
 p>0, 2<9/4.5
 e'e' (tot. unc.)
 p>0, nid-y
 H1 (tot. unc.)
 p>2.5 GeV/c, mid-y

by ALICE compared with the results of other experiments

Conclusions

ALICE detector showed to have good capabilities in the exclusive reconstruction of D+, via hadronic decays: D+s signal has been observed in four

- p_t bins with a good significance
- D+. p. differential cross section measured in the 2-12 GeV/c transverse momentum range

With the 2011 ALICE pp data sample, the signal significance is expected to improve and the cross section p_t range to be larger.