

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past $(3 b / p b)$
b) Present $(\sim 1 / f b)$
2. Hot off the press:
a) Jet-Z Balance (JZB)
b) Opposite-sign τ pair
c) Multi-leptons
d) Razor
3. What did wevexciude?
4. Summary

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past $(36 / p b)$
b) Present $(\sim 1 / f b)$

b) apposite-sign τ pair
c) Multi-Leptons
d) Razor
2. What did wevexclude?
not
3. Summary

- High- p_{T} final states from decay of produced TeV -scale new particles.
- Missing transverse momentum $\left(E_{T}\right)$ from decay into (meta-)stable dark matter candidates.

5) Signgtures sought by sus searshas

ㄱ) Signatures sought by sush searhes

The CMS dark matter search program spans an [increasingly] large space of final states and features:

- A highly model-independent way of charting an unknown Beyond Standard Model (BSM) territory.
- Correlations amongst these channels will be directly useful for verification and characterization in case excess(es) are observed.
- Emphasis on cross-checks by looking at the same final states through different features.

A rich array of potential fipal states... ... and distinct non-Standard-Model (SM)-like sïgnatures

Requiring one or more
 ID-ed objects
 costs generality, but allows relaxing some cuts

(11) Signctures soveht by sis 9 scarhes

$\begin{aligned} & \frac{\mathrm{N}}{3} \\ & \frac{3}{2} \\ & \sim \\ & \sim \end{aligned}$	$\frac{\geq 3 \mathrm{e} / \mu / \tau}{\mu}$	Jet-Z Balance	$\geq 2 \text { jets }$	Opposite-Sign
$\stackrel{+}{*}$			IZB	05
$\begin{aligned} & \frac{3}{2} \\ & \underset{\sim}{2} \\ & \underset{\sim}{n} \end{aligned}$		$\frac{\frac{3}{2}}{5}$		$\begin{gathered} \text { OS } \\ e / \mu S \\ e / \mu / \tau \end{gathered}$
$\stackrel{4}{2}$			$\geq 1 \mathrm{e} / \mu(\mathrm{Z})$	$\geq 1 \mathrm{el} \mathrm{\mu}\left(\chi^{(}\right)$
$\frac{\frac{3}{2}}{6}$		Razor $\& \geq 1 \mathrm{e} / \mu$		
$\stackrel{\rightharpoonup}{\wedge}$			$\alpha_{\top} \& \geq 1 \mathrm{~b}$	
$\frac{3}{2}$		$1 \mathrm{j} \& \boldsymbol{Z}_{\mathrm{T}}$	Razor α_{T}	$\text { jets \& } k_{T}$
	(n/a)	$\geq 1 \mathrm{jet}$	≥ 2 jets	≥ 3 jets

Requiring one or more ID-ed objects costs generality, but allows relaxing some cuts

0 el μ

\% $1 \mathrm{ffl}^{98}$ 2011 deta

Given more data (and time), some searches have been extended to more channels...

14 Signctures soughs by Sll 9 secrshes

E 1ffor 2011 data

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past (3b/pb)
b) Present $(\sim 1 / f b)$
2. Hot off the press:
a) Jet-ZBalance (JZB)

3. What did we exclude? not
4. Summary

Search region

2 Only two significant SM backgrounds in JZB tails:
a) Dileptonic tt (and other flavorsymmetric processes)
» Predict as average of yields in:

\boldsymbol{U} flavors	m(थ)
Opposite	Z window
Opposite	Side-band
Same	Side-band

Constructed to provide equal yield as in Z mass window (according to MC, verified in low |JZB| data)
b) Z+jets with mismeasured jets
» Estimate JZB > X yield as equal to that in JZB <-X region, after subtraction of (a).

The $\mathrm{e}^{3}-2$ Balance (JZB) method

2 Only two significant SM backgrounds in JZB tails:

a) Dileptonic tt (and other flavorsymmetric processes)
» Predict as average of yields in:

\boldsymbol{U} flavors	m(थ)
Opposite	Z window
Opposite	Side-band
Same	Side-band

Constructed to provide equal yield as in Z mass window (according to MC, verified in low |JZB| data)
b) Z+jets with mismeasured jets
» Estimate JZB > X yield as equal to that in JZB <-X region, after subtraction of (a).

- Taus are a challenging reconstruction task:
- Decays are simple and well-known, but huge background from jets.

About $1 / 3^{\text {rd }}$ decay into (soft) e's and μ^{\prime} s. The rest (τ_{h}) decay into hadrons and neu » After isolation τ_{h} selection efficiency is		
Channel	$p_{\mathrm{T}}(\mathrm{l})$ threshold	Search region
$\longrightarrow \mathrm{e} / \mu+\mathrm{t}_{\mathrm{h}}$	20 GeV	$\left.\begin{array}{l} \geq 2 \text { jets } \\ \left(\mathrm{p}_{T}>30\right) \end{array}\right) \frac{\ddot{H}_{T}>150, H_{T}>40}{\mathbb{Z}_{T}>200, H_{T}>30}$
$\longrightarrow \tau_{\text {h }}+\tau_{h}$	15 GeV	≥ 2 jets ($\mathrm{p}_{\mathrm{T}}>100$), $H_{T}>200$

- $\mathrm{tt} \rightarrow \tau^{+} \tau^{-} X$:
- Model \mathbb{E}_{T} with visible leptons in dilepton ($e \& \mu$) events:

Correc-
tion factors

- Jets misidentified as τ_{h} :

OS tigu palis : Background Estimations

- $\mathrm{tt} \rightarrow \tau^{+} \tau^{-} X$:
- Model \mathbb{E}_{T} with visible leptons in dilepton (e \& μ) events:

tion W polarization \mathbb{Z}_{T} resolution
factors
- Jets misidentified as τ_{h} :

- Extrapolate from enriched control regions using relative selection efficiencies:

Back- ground	Control region
tt	≥ 2 b-tagged jets
QCD	$\left\|\Delta \phi\left(\mathrm{j}_{2}, \mathrm{~A}_{\mathrm{T}}\right)\right\|<0.15$
$\mathrm{Z} \rightarrow \mathrm{vv}$	$\mathrm{Z} \rightarrow \mu^{+} \mu^{-}$
W	$\left\|\Delta \phi\left(\mathrm{j}_{2}, \mathrm{~A}_{\mathrm{T}}\right)\right\|>0.5$, no b -tagged jets

Predicted	4.56 ± 1.08 (stat) ± 0.91 (sys)
Observed	3

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past (36/pb)
b) Present ($\sim 1 / f b)$
2. Hot off the press:
a) Jet-ZBalance (JZB)
b) Opposite-sign τ pair
c) Multi-leptons

not
3. Summary

$$
\begin{gathered}
\left.\begin{array}{c}
3 \ell \\
\geq 4 \ell
\end{array}\right)\left\{\begin{array}{c}
\text { relative } \\
\text { sign }
\end{array}\right)\left\{\begin{array}{l}
\text { flavor }
\end{array}\right\}\left\{\begin{array}{l}
\left.H_{T}>200\right) \\
H_{T}<200
\end{array}\right)\left\{\begin{array}{l}
\mathbb{Z}_{T}>50 \\
\mathbb{Z}_{T}<50
\end{array}\right) .
\end{gathered}
$$

- Very clean search regions:

See CMS-exotica talk by B. Dahmes tomorrow

- A detailed catalog of 3 and ≥ 4 lepton channels, covering possibly many BSM theory footprints.
- A wide range of kinematic regimes probed.
- \mathbb{E}_{T} cut not required to regulate SM background:
» A golden channel for some signatures of R-parity-violating SUSY

$$
\left(\begin{array}{l}
3 l \\
\geq 46
\end{array}\right\}\left\{\begin{array}{c}
\text { relative } \\
\text { sign }
\end{array}\right\}\left\{\begin{array}{c}
\text { flavor }
\end{array}\left\{\begin{array}{l}
\left.H_{T}>200\right) \\
H_{T}<200
\end{array}\right\}\left\{\begin{array}{l}
B_{T}>50 \\
B_{T}<50
\end{array}\right)\right.
$$

52 channels

- Very clean search regions.
- Nevertheless, careful work has been done to understand backgrounds, especially the non-prompt:

See CMS-exotica talk by B. Dahmes tomorrow

- e.g. $\ell+(\gamma \rightarrow \ell)$ from Z-peak in trilepton invariant mass.

Asymmetric conversions

$$
\binom{3 \ell}{\geq 4 \ell}\left\{\begin{array}{c}
\text { relative } \\
\text { sign }
\end{array}\right\}\left\{\text { flavor }\left\{\begin{array}{l}
H_{T}>200
\end{array}\right\}\left\{\begin{array}{l}
\mathbb{Z}_{T}>50 \\
H_{T}<200
\end{array}\right)\left\{\begin{array}{l}
\mathbb{Z}_{T}<50
\end{array}\right)\right.
$$

52 channels
(All in good agreement with prediction)

SUS-1 1-008

- Very clean search regions.
- Nevertheless, careful work has been done to understand

See CMS-exotica talk by B. Dahmes tomorrow backgrounds, especially the non-prompt:

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past (36/pb)
b) Present ($\sim 1 / f b)$
2. Hot off the press:
a) Jet-ZBalance (JZB)
b) opposite-sign τ pair
c) Multi-leptons
d) Razor

3. Summary

The Ropror variables

Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).

The Ropzor variables

1Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).

- Analogy: decay product J1 of a particle produced at rest has monochromatic energy $\left(2 \mathrm{M}_{\Delta}\right)$:

$$
M_{\Delta}=\left(M_{Q}^{2}-M_{L S P}^{2}\right) / M_{Q}^{2}
$$

" How can we estimate M_{Δ} ?

The Ropzor variables

1Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).

- Analogy: decay product J1 of a particle produced at rest has monochromatic energy $\left(2 \mathrm{M}_{\Delta}\right)$:
- Reduce smearing from unknown incoming p_{z} by boosting to a frame where J1 and J2 z-momenta are equal and opposite:

Total energy (J1 + J2) in a Razor frame
$2 \quad M_{R} \equiv \sqrt{\left(E_{\mathrm{j}_{1}}+E_{\mathrm{j}_{2}}\right)^{2}-\left(p_{z}^{\mathrm{j}_{1}}+p_{z}^{\mathrm{j}_{2}}\right)^{2}}$

Rezor ifanc

The Robzor variables

1Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).

- Analogy: decay product J1 of a particle produced at rest has monochromatic energy $\left(2 \mathrm{M}_{\Delta}\right)$:
- Reduce smearing from unknown incoming p_{z} by boosting to a frame where J1 and J2 z-momenta are equal and opposite:
- Divide \vec{Z}_{T} equally into two "LSP momenta",

$12 / 1$ compute transverse mass for each decay chain:

$$
M_{T}^{R} \equiv \sqrt{\frac{E_{T}^{m i s s}\left(p_{T}^{j 1}+p_{T}^{j 2}\right)-\vec{E}_{T}^{m i s s} \cdot\left(\vec{p}_{T}^{j 1}+\vec{p}_{T}^{j 2}\right)}{2}}
$$

Average transverse mass end-point at M_{Δ}

Total energy (J1 + J2) in a Razor frame
$2 \quad M_{R} \equiv \sqrt{\left(E_{\mathrm{j}_{1}}+E_{\mathrm{j}_{2}}\right)^{2}-\left(p_{z}^{\mathrm{j}_{1}}+p_{z}^{\mathrm{j}_{2}}\right)^{2}}$
$3 \quad R \equiv \frac{M_{T}^{R}}{M_{R}}$
peaks around M_{Δ}

Another R(trzor advantage

peaks around M_{Δ}

The Roror analysis

Yield of each background modeled by a 2D functional form.

- Initial parameters \& constraints extracted from enriched control regions in data.

Combined SM fit performed in a sideband of each channel box.

SUSS-1 1-008

Table of Contents

1. Dark Matter (DM) searches at CMS:
a) Past (36/pb)
b) Present ($\sim 1 / f b)$
2. Hot off the press:
a) Jet-Z Balance (JZE)
b) apposite-sign τ pair
c) Muiti-Leptons
d) Razor
3. What did wevexclude? not

No wiggle room.
Limits: shandy quantify tuning.
N. Hame

Implications of LHC results for
TeV-scale physics: WG2 meeting

Beyond cmbsM exslurlonkm

- We complement these benchmarks with Simplified Model Spectra (SMS):
- Each SMS consists of a small list of new particles and their decays (~ 1 topology).
- Can be thought of as building blocks/effective theories.
» How much do our results say about these reactions in isolation (assume 100\% B.R.)?
» Signal contamination accounted for as applicable, but only from the SMS under study.

Lepton
projection e/ μ \& jets

Sensitive analyses:

- All-hadronic
- Dilepton w/o Z veto
- Multiple analyses, different variables.
- Important for a robust search program.
- Leptonic and hadronic searches provide complementary information:
- Use of leptons allow relaxation of jet and ${E_{T}}_{T}$ cuts (from trigger level!):

	Search Region (cuts in GeV)
$Z+Z_{T}$	≥ 2 jets, $\mathbb{Z}_{T}>100(200)$
$\mathbb{Z}_{T}+$ jets	≥ 3 jets, $\mathbb{H}_{T}>350, H_{T}>800$

We have not exsludsolm

Very low mass splitting region.

- Requires significant ISR to have appreciable $E_{T}\left(H_{T}\right)$.
- $m_{\text {produced }}-\mathrm{m}_{\text {LSP }}<\mathrm{X}$ region omitted due to inadequate theory modeling.

e.g. $E_{T}+$ jets search, but features are similar for others

We have not exsludsolm

Very low mass splitting region.

- Requires significant ISR to have appreciable $\mathbb{E}_{\mathrm{T}}\left(\mathrm{H}_{\mathrm{T}}\right)$.
- $\mathrm{m}_{\text {produced }}-\mathrm{m}_{\text {LSP }}<\mathrm{X}$ region omitted due to inadequate theory modeling.

3 Intermediate mass splitting region for high produced masses.

e.g. $E_{T}+j e t s$ search, but features are similar for others

We hove not exsludsom

1[A lot of the CMSSM]

2
Very low mass splitting region.

- Requires significant ISR to have appreciable $E_{T}\left(H_{T}\right)$.
- $\mathrm{m}_{\text {produced }}-\mathrm{m}_{\text {LSP }}<\mathrm{X}$ region omitted due to inadequate theory modeling.

3
Intermediate mass splitting region for high produced masses.

Lower than expected signal yields, e.g.:
 vanilla SUSY assumptions

- If there is significant B.R. to other, less detectible final states.
e.g. $\mathbb{E}_{T}+j e t s$ search, but features are similar for others

Very low mass splitting region.

- Requires significant ISR to have appreciable $E_{T}\left(H_{T}\right)$.
- $\mathrm{m}_{\text {produced }}-\mathrm{m}_{\text {LSP }}<\mathrm{X}$ region omitted due to inadequate theory modeling.

3
Intermediate mass splitting region for high produced masses.

Lower than expected signal yields, e.g.:

- If production cross-section is lower than vanilla SUSY assumptions
- If there is significant B.R. to other, less detectible final states.

5
Direct production of stops/sbottoms...

- ... however production via gluino decays have been ruled out to some degree.

Table of Contents

1. Dark Matter (DM)
searches at CMS:
a) Past
($36 / \mathrm{p} 7$)
A comprehensive program covering an increasingly large
b) Present $(\sim 1 / f b)$ array of final states and features
2. Hot off the press:
(a) Jet-Z Balance (JZB)
b) apposite-sign τ pair
c) Multi-leptons
d) Razor

CMSSM: $m(\tilde{q})>1 T e V$, $m(\tilde{g}) \sim 700-900 \mathrm{GeV}$
Single topology SMS: $m(\tilde{q} / \tilde{g})$ in the range $450-900 \mathrm{GeV}$ (depends
3. What did wevexclude? not
4. Summary \square on decay chain)

- Signals with (or equivalent to) squeezed spectra
- Signals with lower than expected crosssections /B.R.
- No significant ($7^{s t} / 2^{\text {nd }}$ gen) squark/gluino production

$-10-$

Extra Information

55) SUSVY sediches of CMB: PAS numbers (SUS-*)

$$
\binom{3 \ell}{\geq 4 \ell}\left\{\begin{array}{c}
\text { relative } \\
\text { sign }
\end{array}\right\}\left\{\text { flavor }\left\{\begin{array}{l}
H_{T}>200
\end{array}\right\}\left\{\begin{array}{l}
\mathbb{Z}_{T}>50 \\
H_{T}<200
\end{array}\right)\left(\mathbb{Z}_{T}<50\right)\right.
$$

52 channels
(All in good agreement with prediction)

SUS-1 1-008

Background predictions:

- For various cuts on $M_{R}(R)$, the differential distribution of $R\left(M_{R}\right)$ has a simple exponential (2 exponentials for top/EWK) shape for SM backgrounds:

- This allows one to formulate a simple fit function for the 2D $\left(M_{R}, R^{2}\right)$ shape.

2

$$
M_{R} \equiv \sqrt{\left(E_{\mathrm{j}_{1}}+E_{\mathrm{j}_{2}}\right)^{2}-\left(p_{z}^{\mathrm{j}_{1}}+p_{z}^{\mathrm{j}_{2}}\right)^{2}}
$$

$$
R \equiv \frac{M_{T}^{R}}{M_{R}}
$$

Wurfib=lepton Exslusions s Slepton sorillsp

CMS Preliminary
Ranges of exclusion limits for gluinos and squarks, varying $m\left(\tilde{\chi}^{0}\right)$

$\mathbf{9 5 \%}$ exclusion limits for $\tilde{\mathbf{g}} \tilde{\mathbf{g}}, \tilde{\mathbf{g}} \rightarrow \mathbf{b b} \tilde{\chi}^{0}$

Obscure Information

65) Signcivires soughs by susy seorhts
 correlations of higherlevel objects w.r.t. $\boldsymbol{F}_{\mathrm{T}}$

- Multiple analyses, different variables.
- Important for a robust search program.
- Leptonic and hadronic searches provide complementary information:
- Use of leptons allow relaxation of jet and E_{T} cuts (from trigger level!):

	Search Region (cuts in GeV)
$Z+Z_{T}$	≥ 2 jets, $\mathbb{Z}_{T}>100(200)$
$\mathbb{Z}_{T}+$ jets	≥ 3 jets, $H_{T}>350, H_{T}>800$

- High- H_{T} (reduced \mathbb{Z}_{T} requirement) search regions important for signals with long decay chains:
- Exclusions taken from search region that yields best expected limit.

leptonic searches recover efficiency

Energetic signals, hadronic searches gain from larger branching ratio (B.R.)

2

Very low mass splitting region.

- LSP's produced back-to-back - requires significant ISR to have appreciable $\not \mathbb{Z}_{T}$.
- $m_{\text {produced }}-m_{\text {LSP }}<X$ region omitted due to inadequate theory modeling.

e.g. $E_{T}+$ jets search, but features are similar for others

Very low mass splitting region.

- LSP's produced back-to-back - requires significant ISR to have appreciable \mathbb{Z}_{T}.
$-\mathrm{m}_{\text {produced }}-\mathrm{m}_{\text {LSP }}<\mathrm{X}$ region omitted due to inadequate theory modeling.

3
Intermediate mass splitting region for high produced masses.

- Contours of search efficiency are ~ diagonal, but cross-section falls like $1 / \mathrm{m}_{\text {produced }}{ }^{5(-6)}$.

e.g. $E_{T}+j e t s$ search, but features are similar for others

Very low mass splitting region.

- LSP's produced back-to-back - requires significant ISR to have appreciable \mathbb{Z}_{T}.
- $m_{\text {produced }}-m_{\text {LSP }}<X$ region omitted due to inadequate theory modeling.

3
Intermediate mass splitting region for high produced masses.

- Contours of search efficiency are ~ diagonal, but cross-section falls like $1 / \mathrm{m}_{\text {produced }}{ }^{5(-6)}$.

4 If the production cross-section is lower than predicted by vanilla SUSY assumptions, or significant B.R. to other less detectible final states.

