

CMS collaboration

Hadron Collider Physics 2011, Paris

- 1. Dark Matter (DM) searches at CMS:
 - a) Past (36/pb)
 - b) Present (-1/fb)
- 2. Hot off the press:
 - a) Jet-Z Balance (JZB)
 - b) Opposite-sign t pair
 - c) Multi-leptons
 - d) Razor
- 3. What did we exclude?
- 4. Summary

1. Dark Matter (DM) searches at CMS:

a) Past (36/pb)

b) Present (-1/fb)

```
22nb<sup>-1</sup> 26pb<sup>-1</sup> 260pb<sup>-1</sup> 940pb<sup>-1</sup> 1.3fb<sup>-1</sup> 2.3fb<sup>-1</sup> 2.8fb<sup>-1</sup> 4.6fb<sup>-1</sup> 5.3fb<sup>-1</sup> 13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11
```

- b) Opposite-sign t pair
- c) Multi-leptons
- d) Razor
- 3. What did we exclude?
- 4. Summary

- High-p_T final states from decay of produced TeV-scale new particles.
- Missing transverse momentum
 (₱_T) from decay into (meta-)stable
 dark matter candidates.

Jet multiplicity

(n/a) ≥ 1 jet ≥ 2 jets ≥ 3 jets ≥ 4 jets Production and decay of new colored particles

 Λ I

Signatures sought by SUSY searches

The CMS dark matter search program spans an [increasingly] large space of final states and features:

- A highly *model-independent* way of charting an unknown Beyond Standard Model (BSM) territory.
- Correlations amongst these channels will be directly useful for verification and *characterization* in case excess(es) are observed.
- Emphasis on *cross-checks* by looking at the same final states through different features.

Jet multiplicity

A rich array of potential final states... ... and distinct non-Standard-Model (SM)-like signatures

1. Dark Matter (DM) searches at CMS:

a) Past (36/pb)
b) Present (~1/fb)

b) Present (-1/fb)

2. Hot off the press: a) Jet-Z Balance (JZB)

- 3. What did we exclude?
- 4. Summary

The Jet-Z Balance (JZB) method

The Jet-Z Balance (JZB) method

- 2
- Only two significant SM backgrounds in JZB tails:
- a) Dileptonic tt (and other flavorsymmetric processes)
 - » Predict as average of yields in:

𝑢 flavors	m(ℓℓ)
Opposite	Z window
Opposite	Side-band
Same	Side-band

Constructed to provide equal yield as in Z mass window (according to MC, verified in low |JZB| data)

- **b) Z+jets** with mismeasured jets
 - » Estimate JZB > X yield as equal to that in JZB < -X region, after subtraction of (a).

The Jet-Z Balance (JZB) method

poster N5

- 2
- Only two significant SM backgrounds in JZB tails:
- a) Dileptonic tt (and other flavorsymmetric processes)
 - » Predict as average of yields in:

𝑢 flavors	m(<i>ℓ</i> ℓ)
Opposite	Z window
Opposite	Side-band
Same	Side-band

Constructed to provide equal yield as in Z mass window (according to MC, verified in low |JZB| data)

- **b) Z+jets** with mismeasured jets
 - » Estimate JZB > X yield as equal to that in JZB < -X region, after subtraction of (a).

1. Dark Matter (DM) searches at CMS: a) Past (36/pb)

b) Present (-1/fb)

2. Hot off the press:

a) Jet-Z Balance (JZB)

b) Opposite-sign τ pair
22nb⁻¹ 260pb⁻¹ 940pb⁻¹ 1.3fb⁻¹ 2.3fb⁻¹ 2.8fb⁻¹ 4.6fb⁻¹ 5.3fb⁻¹ 13/3 13/4 13/5 13/6 R \(\infty \) 2 \(13/3 \) 13/8 13/9 13/10 13/11

- 3. What did we exclude?
- 4. Summary

The Opposite-sign (OS) tau pairs search

- Taus are a challenging reconstruction task:
 - Decays are simple and well-known, but huge background from jets.
 - About 1/3rd decay into (soft) e's and μ's.
 - The rest (τ_h) decay into hadrons and neutrinos.
 - » After isolation τ_h selection efficiency is ~30-40% for this search.

	Channel	p _T (l) threshold	Search region	
->	►e/μ + τ _h	20 GeV	$\geq 2 \text{ jets}$ $\not \!\!\!\!/_{T} > 150, \ H_{T} > 400$ $\not \!\!\!\!/_{T} > 30) \not \!\!\!\!/_{T} > 200, \ H_{T} > 300$	
-;	$\tau_h + \tau_h$	15 GeV	\geq 2 jets (p _T > 100), \not h _T > 200	

Of tau pairs: Background Estimations

poster QNA

- tt $\rightarrow \tau^+\tau^-X$:
 - Model ∉_T with visible leptons in dilepton (e & μ) events:

• Jets misidentified as τ_h :

Predicted	10.1 ± 1.7 (stat) ± 2.7 (sys) 7.5 ± 1.6 (stat) ± 1.9 (sys)
Observed	11 8

Of tau pairs: Background Estimations

SUS-11-007

- tt $\rightarrow \tau^+\tau^-X$:
 - Model ∉_T with visible leptons in dilepton (e & μ) events:

Correction W polarization
$$\not\!\!\!E_T$$
 resolution $\varepsilon(e/\mu)$

• Jets misidentified as τ_h :

 $e/\mu + \tau_h$

 Extrapolate from enriched control regions using relative selection efficiencies:

Back- ground	Control region
tt	≥2 b-tagged jets
QCD	$ \Delta \phi(j_2, \not H_T) < 0.15$
Z→vv	Z → μ⁺μ⁻
W	$ \Delta \phi(j_2, H_T) > 0.5$, no b-tagged jets

poster NIA

Predicted	4.56 ± 1.08 (stat) ± 0.91 (sys)
Observed	3

 $\tau_h + \tau_h$

1. Dark Matter (DM) searches at CMS:

a) Past (36/pb)

b) Present (-1/fb)

2. Hot off the press:

a) Jet-Z Balance (JZB)

b) Opposite-sign t pair

c) Multi-leptons

4. Summary

The Multi-lepton (≥3 e/µ/z) search

$$\begin{cases}
3\ell \\ \ge 4\ell
\end{cases}
\begin{cases}
\text{relative } \\
\text{sign}
\end{cases}
\begin{cases}
\text{flavor } \\
\text{H}_T > 200 \\
\text{H}_T < 200
\end{cases}
\begin{cases}
\not\not\in_T > 50
\end{cases}$$

$$\equiv 52 \text{ channels}$$

- Very clean search regions:
 - A detailed catalog of 3 and ≥4 lepton channels, covering possibly many BSM theory footprints.
 - A wide range of kinematic regimes probed.
 - —
 E_T cut not required to regulate SM background:
 - » A golden channel for some signatures of R-parity-violating SUSY

See CMS-exotica talk by B. Dahmes tomorrow

The Multi-lepton (≥3 e/μ/τ) search

$$\begin{cases}
3\ell \\ \ge 4\ell
\end{cases}
\begin{cases}
\text{relative } \\
\text{sign}
\end{cases}
\begin{cases}
\text{flavor } \\
\text{H}_T > 200 \\
\text{H}_T < 200
\end{cases}
\begin{cases}
\not\not\in_T > 50 \\
\not\not\in_T < 50
\end{cases}$$

$$\equiv 52 \text{ channels}$$

Very clean search regions.

- See CMS-exotica talk by B. Dahmes tomorrow
- Nevertheless, careful work has been done to understand backgrounds, especially the non-prompt:
 - e.g. ℓ +(γ \rightarrow ℓ) from Z-peak in trilepton invariant mass.

The Multi-lepton (≥3 e/μ/τ) search

Very clean search regions.

- See CMS-exotica talk by B. Dahmes tomorrow
- Nevertheless, careful work has been done to understand backgrounds, especially the non-prompt:

1. Dark Matter (DM) searches at CMS:

a) Past (36/pb)

b) Present (-1/fb)

2. Hot off the press:

a) Jet-Z Balance (JZB)

b) Opposite-sign t pair

c) Multi-leptons

d) Razor

22nb⁻¹ 26pb⁻¹ 260pb⁻¹ 940pb⁻¹ 1.3fb⁻¹ 2.3fb⁻¹ 2.8fb⁻¹ 4.6fb⁻¹ 5.3fb⁻¹

13/3 13/4 13/5 13/6 13/7 13/8 13/9 13/10 13/11

4. Summary

The Razor variables

1

Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).

The Razor variables

- Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).
 - Analogy: decay product J1 of a particle produced at rest has monochromatic energy $(2M_{\Lambda})$:

$$M_{\Delta} = (M_Q^2 - M_{LSP}^2) / M_Q^2$$

" How can we estimate M_{Λ} ?

The Rozor variables

- Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).
 - Analogy: decay product J1 of a particle produced at rest has monochromatic energy $(2M_{\Lambda})$:
 - Reduce smearing from unknown incoming p_z by boosting to a frame where J1 and J2 z-momenta are equal and opposite:

Total energy (J1 + J2) in a Razor frame

$$\mathbf{M}_{R} \equiv \sqrt{(E_{j_{1}} + E_{j_{2}})^{2} - (p_{z}^{j_{1}} + p_{z}^{j_{2}})^{2}}$$

Razor frame

The Razor variables

- Cluster objects into two "megajets" a.k.a. hemispheres (J1, J2).
 - Analogy: decay product J1 of a particle produced at rest has monochromatic energy $(2M_{\Lambda})$:
 - Reduce smearing from unknown incoming p_z by boosting to a frame where J1 and J2 z-momenta are equal and opposite:
 - Divide equally into two "LSP momenta", compute transverse mass for each decay chain:

$$M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j1} + p_T^{j2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j1} + \vec{p}_T^{j2})}{2}}$$

Average transverse mass end-point at M_{Λ}

Total energy (J1 + J2) in a Razor frame

$$\mathbf{M}_{R} \equiv \sqrt{(E_{j_{1}} + E_{j_{2}})^{2} - (p_{z}^{j_{1}} + p_{z}^{j_{2}})^{2}}$$

 $R \equiv \frac{M_T^R}{M_R}$

A Rozor advantage

 $M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$

$$R \equiv \frac{M_T^R}{M_R}$$

Another Rozor advantage

For cuts on M_R (R), the distribution of R (M_R) has (2-)exponential shape for SM backgrounds:

$$M_R \equiv \sqrt{(E_{j_1} + E_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$

$$R \equiv \frac{M_T^R}{M_R}$$

The Rozor analysis

a

Yield of each background modeled by a 2D functional form.

Initial

 parameters &
 constraints
 extracted from
 enriched
 control regions
 in data.

b

Combined SM fit performed in a sideband of each channel box.

Table of Contents

- 1. Dark Matter (DM) searches at CMS:
 - a) Past (36/pb)
 - b) Present (-1/fb)
- Z. Hot off the press:
 - a) Jet-Z Balance (JZB)
 - b) Opposite-sign t pair
 - c) Multi-leptons
 - d) Razor
- 3. What did we exclude?

5							7	
	*	*	*	*	*_ /	*	13/9	

CMSSM Exclusion

Beyond CMSSM exclusions...

- We complement these benchmarks with Simplified Model Spectra (SMS):
 - Each SMS consists of a small list of new particles and their decays (\sim 1 topology).
 - Can be thought of as building blocks/effective theories.
 - » How much do our results say about these reactions in isolation (assume 100% B.R.)?
 - » Signal contamination accounted for as applicable, but only from the SMS under study.

Exclusion by various searches

- Multiple analyses, different variables.
 - Important for a robust search program.
- Leptonic and hadronic searches provide complementary information:
 - Use of leptons allow relaxation of jet and É_⊤ cuts (from trigger level!):

	Search Region (cuts in GeV)			
Z + ⊭ _T	≥2 jets, ½ _T > 100 (200)			
⊭ _T + jets	≥3 jets,			

leptonic searches recover efficiency

branching ratio (B.R.)

SMS view of SUSY searches

- 1 [A lot of the CMSSM]
- 2

- Requires significant ISR to have appreciable $\not E_T$ (H_T).
- m_{produced} m_{LSP} < X region omitted due to inadequate theory modeling.

e.g. **£**_T+jets search, but features are similar for others

- 1 [A lot of the CMSSM]
- Very low mass splitting region.
 - Requires significant ISR to have appreciable $\not E_T$ (H_T).
 - $m_{produced} m_{LSP} < X$ region omitted due to inadequate theory modeling.
- Intermediate mass splitting region for high produced masses.

e.g. **£**_T+jets search, but features are similar for others

- 1 [A lot of the CMSSM]
- Very low mass splitting region.
 - Requires significant ISR to have appreciable $\not E_T$ (H_T).
 - $m_{produced} m_{LSP} < X$ region omitted due to inadequate theory modeling.
- Intermediate mass splitting region for high produced masses.
- Lower than expected signal yields, e.g.:
 - If production cross-section is lower than vanilla SUSY assumptions
 - If there is significant B.R. to other, less detectible final states.

e.g. **½**_T+jets search, but features are similar for others

- 1 [A lot of the CMSSM]
- Very low mass splitting region.
 - Requires significant ISR to have appreciable $\not E_T$ (H_T).
 - $m_{produced} m_{LSP} < X$ region omitted due to inadequate theory modeling.
- Intermediate mass splitting region for high produced masses.
- Lower than expected signal yields, e.g.:
 - If production cross-section is lower than vanilla SUSY assumptions
 - If there is significant B.R. to other, less detectible final states.
 - Direct production of stops/sbottoms...

 ... however production via gluino decays have been ruled out to some degree.

We have not yet looked [specifically] at....

We have not yet looked [specifically] at....

We have not yet looked [specifically] at....

Table of Contents

1. Dark Matter (DM) searches at CMS:

- a) Past (36/pb)
 - b) Present (-1/fb)

A comprehensive program covering an increasingly large array of final states and features

2. Hot off the press:

- (a) Jet-Z Balance (JZB)
- b) Opposite-sign r pair
 - c) Multi-leptons
- d) Razor

3. What did we exclude?

4. Summary

CMSSM: m(q̃)>1TeV, m(g̃)~700-900GeV

Single topology SMS: m(q̃/g̃) in the range 450-900GeV (depends on decay chain)

- Signals with (or equivalent to) squeezed spectra
- Signals with lower than expected cross-sections/B·R·
- No significant (1st/2nd gen) squark/gluino production

Extra Information

SUSY searches of CMS: PAS numbers (SUS-*)

The Multi-lepton (≥3 e/μ/τ) search

Background predictions:

Another Razor advantage

For various cuts on M_R (R), the differential distribution of R (M_R) has a simple exponential (2 exponentials for top/EWK) shape for SM backgrounds:

• This allows one to formulate a simple fit function for the 2D (M_R, R^2) shape.

$$M_R \equiv \sqrt{(E_{
m j_1} + E_{
m j_2})^2 - (p_z^{
m j_1} + p_z^{
m j_2})^2}$$

Multi-lepton Exclusions & CMSSM

Multi-lepton Exclusions & Slepton co-NLSP

Razor Exclusions

Detailed SMS Summary

CMS Preliminary

Ranges of exclusion limits for gluinos and squarks, varying $m(\tilde{\chi}^0)$

For limits on $m(\tilde{g}), m(\tilde{q}) >> m(\tilde{g})$ (and vice versa). $\sigma^{\mathrm{prod}} = \sigma^{\mathrm{NLO-QCD}}$. $m(\tilde{\chi}^{\pm}), m(\tilde{\chi}^{0}_{2}) \equiv \frac{m(\tilde{g}) + m(\tilde{\chi}^{0})}{2}$. $m(\tilde{\chi}^{0})$ is varied from 0 GeV/c^{2} (dark blue) to $m(\tilde{g}) - 200 \; \mathrm{GeV}/c^{2}$ (light blue).

 $\widetilde{g}\widetilde{g},\widetilde{g}\to bb\widetilde{\chi}^o$ comparisons

Obscure Information

e.g. Exclusion by various searches

"T5zz"

- Multiple analyses, different variables.
 - Important for a robust search program.
- Leptonic and hadronic searches provide complementary information:
 - Use of leptons allow relaxation of jet and É_T cuts (from trigger level!):

	Search Region (cuts in GeV)					
Z + K_T	≥2 jets, ⊭ _T > 100 (200)					
⊭ _T + jets	\geq 3 jets, $H_T > 350$, $H_T > 800$					

- High-H_T (reduced £_T requirement) search regions important for signals with long decay chains:
 - Exclusions taken from search region that yields best expected limit.

Soft signals, leptonic searches recover efficiency

Energetic signals, hadronic searches gain from larger branching ratio (B.R.)

- m_{produced} m_{LSP} < X region omitted due to inadequate theory modeling.

e.g. **£**_T+jets search, but features are similar for others

- m_{produced} m_{LSP} < X region omitted due to inadequate theory modeling.
- Intermediate mass splitting region for high produced masses.
 - Contours of search efficiency are ~ diagonal, but cross-section falls like 1/m_{produced} 5(-6).

e.g. **½**_T+jets search, but features are similar for others

- $m_{produced} m_{LSP} < X$ region omitted due to inadequate theory modeling.
- Intermediate mass splitting region for high produced masses.
 - Contours of search efficiency are ~ diagonal, but cross-section falls like 1/m_{produced} 5(-6).
- If the production cross-section is lower than predicted by vanilla SUSY assumptions, or significant B.R. to other less detectible final states.

e.g. **½**_T+jets search, but features are similar for others