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ultra-relativistic heavy ion collisions

Pb-Pb collisions at s'/2=2.76 TeV/nucleon pair [ALICE, CMS, ATLAS]
largest jump in energy in collider history [RHIC: s'/2= 200 GeV/nucleon pair]
access to an extended kinematic range
access to new high-p: observables [e.g. fully reconstructed jets]

the collision creates a hot and dense QCD medium [the Quark-Gluon Plasma 2]
resulting in

collective behaviour :: see J.-Y. Ollitrault’s talk later in the week

modified QCD dynamics due to medium presence :: this talk



| CMS Experiment at LHC, CERN
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high-p: hadron production in HIC

factorized description of hadron production at high-p: in heavy ion collisions is q,
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high-p: hadron production in HIC

factorized description of hadron production at high-p: in heavy ion collisions is a,

phenomenological consistent, working assumption
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FF [final state]
* high-p: partons traverse in-medium

PDFs [initial state]
* universal, non-perturbative -, path length 0(10 fm/c) and thus have a
* scale dependence from DGLAP evolution % long QCD time to interact

o determined from global fits [eA, pA]
e control of nuclear modifications essential

[cold nuclear matter effects]

12 fm

hard partonic collision process [pQCD]
* |ocalized on point-like scale [~ 1/E1]

and thus oblivious to the surrounding
QCD medium

jet quenching :: the modifications effected on the propagating parton, and on its shower, by the QCD medium it traverses




dual role of jet quenching studies

ultimately jet quenching studies [medium induced modifications of observed
properties of high-p: properties] allow for detailed characterization of produced
medium

high-p: probes are created early
their production mechanism is under good theoretical control

they can traverse a significant in-medium path length

the observable consequences of probe-medium interactions encode detailed
information on medium properties
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medium
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neir production mechanism is under good theoretical control

ney can traverse a significant in-medium path length

he observable consequences of probe-medium interactions encode detailed

information on medium properties

HOWEVER

full potential as medium probes limited by theoretical understanding of the
microscopic dynamics responsible for the observed modifications

jet quenching studies provide the necessary constraints on the dynamics

wished full theoretical description of dynamics of in-medium high-p: parton and its current status [the rest of this talk]




-+ disclaimer ::

this talk focus on only those issues for
which there has been, in my opinion,
significant theoretical and

phenomenological progress triggered
by LHC heavy ion data.

consequently, many omissions ...



in-medium dynamics of high-p; parton
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in-medium dynamics of high-p; parton
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modified parton branching

medium induced splitting + interference with vacuum like radiation



in-medium dynamics of high-p; parton
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modified parton branching
medium induced splitting + interference with vacuum like radiation

coherent interaction of parton and radiated gluon with medium
scatterers [LPM effect]
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in-medium dynamics of high-p; parton
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modified parton branching
medium induced splitting + interference with vacuum like radiation

coherent interaction of parton and radiated gluon with medium
scatterers [LPM effect]

interference between successive splittings

transverse Brownian motion

colour exchanges with medium in general: medium induced parton energy loss and k: broadnening
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single parton energy loss
* single gluon medium induced radiation [in-medium parton splitting]
e elastic energy loss + medium recoil
e iteration of multiple splittings [in particular, modification of coherence pattern]
e parton mass effects [heavy quarks]
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abridged to do list [full theory of jet quenching]

single parton energy loss
* single gluon medium induced radiation [in-medium parton splitting]
e elastic energy loss + medium recoil
e iteration of multiple splittings [in particular, modification of coherence pattern]
e parton mass effects [heavy quarks]

dynamics of emitted quanta color exchanges with medium
* in particular transport of soft quanta e in particular, effects on hadronization dynamics

Monte Carlo implementation
 first principle probabilistic formulation

e or, effective theory formulation
embedding in realistic medium

* hydrodyamical expansion and flow, ...



parton energy loss



parton energy loss [single emission]
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parton energy loss [approaches]

several pQCD based calculations/frameworks

BaierDokshitzerMuellerPeignéSchiff — Zakharov /ArmestoSalgadoWiedemann

GyulassylevaiVitev

HigherTwist [Wang et al.]

ArnoldMooreYaffe for a detailed comparison see ‘QGP brick’ [arXiv:1106.1106]
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multiple gluon emission > none treat:
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AdS/CFT based approaches elucidating on the effect of strongly coupled medium
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and colour exchanges :: no angular ordering
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multiple emissions

rigorous attempts to understand interference between successive emissions

Mehtar-Tani, Salgado, Tywoniuk [2010-11]
Casalderrey-Solana, lancu [2011]

breakdown of coherence between emitters due to medium momentum transfers
and colour exchanges :: no angular ordering

medium induced radiation out-of-cone [anti-angular ordering]
so far limited to singlet and octet antennas
not yet implemented at monte carlo level

realistic quark-gluon antenna
9 d Abreu, Apolindrio, Casalderrey-Solana, Milhano [in progress]
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mass effects [heavy quarks]

RAA

massive partons expected theoretically to lose less energy due to veto of radiation at

small angle [the dead cone effect] Armesto, Dainese, Salgado, Wiedemann [2005]
Armesto, Salgado, Wiedemann [2004]

Djordjevic, Gyulassy [2004]
Zhang, Wang, Wang [2004]

recall previous slide, medium induced breakdown of interference between splittings
also suppresses radiation at small angles
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mass effects [heavy quarks]

F{AA

massive partons expected theoretically to lose less energy due to veto of radiation at

small angle [the dead cone effect] Armesto, Dainese, Salgado, Wiedemann [2005]
Armesto, Salgado, Wiedemann [2004]

Djordjevic, Gyulassy [2004]
Zhang, Wang, Wang [2004]

recall previous slide, medium induced breakdown of interference between splittings
also suppresses radiation at small angles

calculations generalized for massive case
Armesto, Ma, Mehtar-Tani, Salgado, Tywoniuk [2011]
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new challenges from data

CMS | Data rocordec: Sun Nov 14 10:31:39 2010 CEST jet reconstruction possible in HIC
ety Run/Event: 151076 / 1328520

octon: 249 Cacciari, Rojo, Salam, Soyez [2010]

essential to understand sensitivity of
algorithms to large and fluctuating

baCkg round Cacciari, Salam, Soyez [2011]
Armesto et al. [in preparation]

parton energy loss calculations insufficient, by construction, to address fully reconstructed jets




early lessons from LHC data

Central Pb-Pb, y = 0, Vs, = 2.76 TeV (preliminary)
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early lessons from LHC data
:: di-jet asymmetry
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:: di-jet asymmetry
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early lessons from LHC data
:: di-jet asymmetry
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going beyond parton energy loss
:: dynamics of radiated quanta ::



transport of soft quanta away from jet
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all jet components accumulate an average transverse momentum [Brownian motion]
(k1) ~ QL
in the presence of a medium soft modes are formed early
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sufficiently soft modes are completely decorrelated from the jet direction

w < \/qL



transport of soft quanta away from jet
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energy is lost by transport of soft components fo large angles
w < \/qL efficient even in absence of medium induced radiation

Casalderrey-Solana, Milhano, Wiedemann [2010]
Qin, Muller [2010]
Young, Schenke, Jeon, Gale [2011] :: MARTINI



going beyond parton energy loss
.. colour exchanges with medium ::
:: hadronization ::



in and out

most branchings in parton shower occur outside the medium; hadronization likely to
happen outside Casalderrey-Solana, Milhano, Quiroga-Arias [2011]
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most branchings in parton shower occur outside the medium; hadronization likely to
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in and out

most branchings in parton shower occur outside the medium; hadronization likely to
hclppen outside Casalderrey-Solana, Milhano, Quiroga-Arias [2011]
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natural explanation for non-modification of jet fragmentation functions

OR NOT

in-medium hadronization, but still with unmodified jet fragmentation within a
specific model Loshaj Kharzeev[2011]



colour flow

colour exchanges between parton and medium can affect hadronization

° (] o o .
irrespective of where it happens Beraudo, Milhano, Wiedemann [2011]
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colour flow within standard parton energy calculation results in characteristic
softening of leading hadron spectra [additional suppression]

further uncertainty in extraction of medium properties
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colour flow

colour exchanges between parton and medium can affect hadronization
irrespective of where it happens Beraudo, Milhano, Wiedemann [2011]
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colour flow within standard parton energy calculation results in characteristic
softening of leading hadron spectra [additional suppression]

further uncertainty in extraction of medium properties
modified jet hadrochemistry Sapeta, Wiedemann [2008]

also, colour exchanges open new ‘anomalous’ channels for baryon production

Aurenche, Zakharov [2011]
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more than ever exp-ph/th crosstalk
essential for significant progress



