# Theoretical overview of high-pt in heavy ion collisions

José Guilherme Milhano

CENTRA-IST (Lisbon) & CERN PH-TH



Hadron Collider Physics Symposium 2011, Paris, 14 November 2011

### ultra-relativistic heavy ion collisions

- Pb-Pb collisions at s<sup>1/2</sup> = 2.76 TeV/nucleon pair [ALICE, CMS, ATLAS]
  - $\hookrightarrow$  largest jump in energy in collider history [RHIC:  $s^{1/2} = 200 \text{ GeV/nucleon pair}$ ]
    - access to an extended kinematic range
    - access to new high-pt observables [e.g. fully reconstructed jets]
  - ← the collision creates a hot and dense QCD medium [the Quark-Gluon Plasma ?] resulting in
    - collective behaviour :: see J.-Y. Ollitrault's talk later in the week
    - modified QCD dynamics due to medium presence :: this talk



the main objective of the LHC heavy ion experimental programme is to unveil the properties of the created medium

 factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption

 $\sigma^{AB \to h} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \sigma^{ij \to k} \otimes D_{k \to h}(z, Q^2)$ 

 factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption

 $\sigma^{AB \to h} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \sigma^{ij \to k} \otimes D_{k \to h}(z, Q^2)$ 

PDFs [initial state]

- universal, non-perturbative
- scale dependence from DGLAP evolution
- determined from global fits [eA, pA]
- control of nuclear modifications essential [cold nuclear matter effects]

—o factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption

 $\sigma^{AB \to h} \sim f_i^A(x_1, Q^2) \otimes f_j^B(x_2, Q^2) \otimes \sigma^{ij \to k} \otimes D_{k \to h}(z, Q^2)$ PDFs [initial state] • universal, non-perturbative E<sub>T1</sub> • scale dependence from DGLAP evolution • determined from global fits [eA, pA] control of nuclear modifications essential [cold nuclear matter effects] hard partonic collision process [pQCD] • localized on point-like scale  $\left[ \sim 1/E_T \right]$ and thus oblivious to the surrounding **QCD** medium E<sub>T2</sub><E<sub>T1</sub>

 factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption



 factorized description of hadron production at high-pt in heavy ion collisions is a, phenomenological consistent, working assumption



jet quenching :: the modifications effected on the propagating parton, and on its shower, by the QCD medium it traverses

# dual role of jet quenching studies

- ultimately jet quenching studies [medium induced modifications of observed properties of high-pt properties] allow for detailed characterization of produced medium
  - → high-pt probes are created early
  - $\hookrightarrow$  their production mechanism is under good theoretical control
  - $\hookrightarrow$  they can traverse a significant in-medium path length
  - ←→ the observable consequences of probe-medium interactions encode detailed information on medium properties

# dual role of jet quenching studies

- ultimately jet quenching studies [medium induced modifications of observed properties of high-pt properties] allow for detailed characterization of produced medium
  - → high-pt probes are created early
  - $\hookrightarrow$  their production mechanism is under good theoretical control
  - $\hookrightarrow$  they can traverse a significant in-medium path length
  - ←→ the observable consequences of probe-medium interactions encode detailed information on medium properties

HOWEVER

—o full potential as medium probes limited by theoretical understanding of the microscopic dynamics responsible for the observed modifications

 $\hookrightarrow$  jet quenching studies provide the necessary constraints on the dynamics

# dual role of jet quenching studies

- ultimately jet quenching studies [medium induced modifications of observed properties of high-pt properties] allow for detailed characterization of produced medium
  - → high-pt probes are created early
  - $\hookrightarrow$  their production mechanism is under good theoretical control
  - $\hookrightarrow$  they can traverse a significant in-medium path length
  - ←→ the observable consequences of probe-medium interactions encode detailed information on medium properties

HOWEVER

- —o full potential as medium probes limited by theoretical understanding of the microscopic dynamics responsible for the observed modifications
  - $\hookrightarrow$  jet quenching studies provide the necessary constraints on the dynamics

wished full theoretical description of dynamics of in-medium high-pt parton and its current status [the rest of this talk]

```
:: disclaimer ::
```

this talk focus on only those issues for which there has been, in my opinion, significant theoretical and phenomenological progress triggered by LHC heavy ion data.

consequently, many omissions ...





--- modified parton branching



---- modified parton branching

 $\hookrightarrow$  medium induced splitting + interference with vacuum like radiation



- ---- modified parton branching
  - $\hookrightarrow$  medium induced splitting + interference with vacuum like radiation
  - ←→ coherent interaction of parton and radiated gluon with medium scatterers [LPM effect]



- ---- modified parton branching
  - ←→ medium induced splitting + interference with vacuum like radiation
  - ←→ coherent interaction of parton and radiated gluon with medium scatterers [LPM effect]
  - $\hookrightarrow$  interference between successive splittings



- --- modified parton branching
  - $\hookrightarrow$  medium induced splitting + interference with vacuum like radiation
  - ←→ coherent interaction of parton and radiated gluon with medium scatterers [LPM effect]
  - $\hookrightarrow$  interference between successive splittings



- ---- modified parton branching
  - $\hookrightarrow$  medium induced splitting + interference with vacuum like radiation
  - ←→ coherent interaction of parton and radiated gluon with medium scatterers [LPM effect]
  - $\hookrightarrow$  interference between successive splittings
- colour exchanges with medium



--- modified parton branching

- ←→ medium induced splitting + interference with vacuum like radiation
- ←→ coherent interaction of parton and radiated gluon with medium scatterers [LPM effect]
- ←→ interference between successive splittings
- colour exchanges with medium

in general: medium induced parton energy loss and kt broadnening

#### single parton energy loss

- single gluon medium induced radiation [in-medium parton splitting]
- elastic energy loss + medium recoil
- iteration of multiple splittings [in particular, modification of coherence pattern]
- parton mass effects [heavy quarks]

in-medium jet calculus rules

#### single parton energy loss

- single gluon medium induced radiation [in-medium parton splitting]
- elastic energy loss + medium recoil
- iteration of multiple splittings [in particular, modification of coherence pattern]
- parton mass effects [heavy quarks]

#### in-medium jet calculus rules

#### dynamics of emitted quanta

• in particular transport of soft quanta

full jets

#### single parton energy loss

- single gluon medium induced radiation [in-medium parton splitting]
- elastic energy loss + medium recoil
- iteration of multiple splittings [in particular, modification of coherence pattern]
- parton mass effects [heavy quarks]

in-medium jet calculus rules

#### dynamics of emitted quanta

• in particular transport of soft quanta

full jets

#### color exchanges with medium

• in particular, effects on hadronization dynamics

hadronic spectra

#### single parton energy loss

- single gluon medium induced radiation [in-medium parton splitting]
- elastic energy loss + medium recoil
- iteration of multiple splittings [in particular, modification of coherence pattern]
- parton mass effects [heavy quarks]

in-medium jet calculus rules

#### dynamics of emitted quanta

• in particular transport of soft quanta

full jets

#### **Monte Carlo implementation**

• first principle probabilistic formulation

• or, effective theory formulation

#### color exchanges with medium

• in particular, effects on hadronization dynamics

hadronic spectra

#### single parton energy loss

- single gluon medium induced radiation [in-medium parton splitting]
- elastic energy loss + medium recoil
- iteration of multiple splittings [in particular, modification of coherence pattern]
- parton mass effects [heavy quarks]

in-medium jet calculus rules

#### dynamics of emitted quanta

• in particular transport of soft quanta

full jets

#### color exchanges with medium

• in particular, effects on hadronization dynamics

hadronic spectra

#### **Monte Carlo implementation**

• first principle probabilistic formulation

• or, effective theory formulation

embedding in realistic medium
 hydrodyamical expansion and flow, ...
 event generator

# parton energy loss

### parton energy loss [single emission]



- ----- several pQCD based calculations/frameworks
  - BaierDokshitzerMuellerPeignéSchiff Zakharov /ArmestoSalgadoWiedemann
  - ←→ GyulassyLevaiVitev
  - ←→ HigherTwist [Wang et al.]
  - ← ArnoldMooreYaffe

for a detailed comparison see 'QGP brick' [arXiv:1106.1106]

- —o several pQCD based calculations/frameworks
  - BaierDokshitzerMuellerPeignéSchiff Zakharov /ArmestoSalgadoWiedemann
  - ←→ GyulassyLevaiVitev
  - ←→ HigherTwist [Wang et al.]
  - ← ArnoldMooreYaffe

for a detailed comparison see 'QGP brick' [arXiv:1106.1106]

- —o several pQCD based calculations/frameworks
  - BaierDokshitzerMuellerPeignéSchiff Zakharov /ArmestoSalgadoWiedemann
  - ←→ GyulassyLevaiVitev
  - ← HigherTwist [Wang et al.]
  - ← ArnoldMooreYaffe

for a detailed comparison see 'QGP brick' [arXiv:1106.1106]

- differ substantially on essential points [assumptions and approximations]
  - treatment of parton branching and of elastic energy loss; modeling of medium; kinematic approximations; multiple gluon emission
    :: none treats parton-medium interactions in rigorous field theoretical terms ::

- —o several pQCD based calculations/frameworks
  - BaierDokshitzerMuellerPeignéSchiff Zakharov /ArmestoSalgadoWiedemann
  - ← GyulassyLevaiVitev
  - ← HigherTwist [Wang et al.]
  - ← ArnoldMooreYaffe

for a detailed comparison see 'QGP brick' [arXiv:1106.1106]

- —O differ substantially on essential points [assumptions and approximations]
  - treatment of parton branching and of elastic energy loss; modeling of medium; kinematic approximations; multiple gluon emission
    :: none treats parton-medium interactions in rigorous field theoretical terms ::
- ——O implemented at Monte Carlo level [HIJING, HYDJET++/PYQUEN, JEWELL, Q-PYTHIA/Q-HERWIG, YaJEM, MARTINI]





- —o all account for hadronic jet quenching data [leading hadron spectra, di-hadron correlations] :: hadronic jet quenching observables insufficient to constrain the dynamics ::



- ----O elastic energy loss not in same footing as induced radiation [HYDJET++/PYQUEN, JEWELL, MARTINI]
- —O all account for hadronic jet quenching data [leading hadron spectra, di-hadron correlations] :: hadronic jet quenching observables insufficient to constrain the dynamics ::
  - -O AdS/CFT based approaches elucidating on the effect of strongly coupled medium

### multiple emissions

- rigorous attempts to understand interference between successive emissions

Mehtar-Tani, Salgado, Tywoniuk [2010-11] Casalderrey-Solana, Iancu [2011]

### multiple emissions

- rigorous attempts to understand interference between successive emissions

Mehtar-Tani, Salgado, Tywoniuk [2010-11] Casalderrey-Solana, Iancu [2011]

- —o breakdown of coherence between emitters due to medium momentum transfers and colour exchanges :: no angular ordering
  - ←→ medium induced radiation out-of-cone [anti-angular ordering]
  - ←→ so far limited to singlet and octet antennas
  - $\hookrightarrow$  not yet implemented at monte carlo level


#### multiple emissions

- rigorous attempts to understand interference between successive emissions

Mehtar-Tani, Salgado, Tywoniuk [2010-11] Casalderrey-Solana, Iancu [2011]

- —o breakdown of coherence between emitters due to medium momentum transfers and colour exchanges :: no angular ordering
  - ←→ medium induced radiation out-of-cone [anti-angular ordering]
  - $\hookrightarrow$  so far limited to singlet and octet antennas
  - $\hookrightarrow$  not yet implemented at monte carlo level
  - ←→ realistic quark-gluon antenna



Abreu, Apolinário, Casalderrey-Solana, Milhano [in progress]

— massive partons expected theoretically to lose less energy due to veto of radiation at small angle [the dead cone effect]
Armesto, Dainese, Salgado, Wiedemann [2005]

Armesto, Dainese, Salgado, Wiedemann [2005] Armesto, Salgado, Wiedemann [2004] Djordjevic, Gyulassy [2004] Zhang, Wang, Wang [2004]

— massive partons expected theoretically to lose less energy due to veto of radiation at small angle [the dead cone effect]
Armesto, Dainese, Salgado, Wiedemann [2005]

Armesto, Dainese, Salgado, Wiedemann [2005] Armesto, Salgado, Wiedemann [2004] Djordjevic, Gyulassy [2004] Zhang, Wang, Wang [2004]



— massive partons expected theoretically to lose less energy due to veto of radiation at small angle [the dead cone effect]
Armesto, Dainese, Salgado, Wiedemann [2005]

Armesto, Dainese, Salgado, Wiedemann [2005] Armesto, Salgado, Wiedemann [2004] Djordjevic, Gyulassy [2004] Zhang, Wang, Wang [2004]

 recall previous slide, medium induced breakdown of interference between splittings also suppresses radiation at small angles



— massive partons expected theoretically to lose less energy due to veto of radiation at small angle [the dead cone effect]
Armesto, Dainese, Salgado, Wiedemann [2005]

Armesto, Dainese, Salgado, Wiedemann [2005] Armesto, Salgado, Wiedemann [2004] Djordjevic, Gyulassy [2004] Zhang, Wang, Wang [2004]

—o recall previous slide, medium induced breakdown of interference between splittings also suppresses radiation at small angles

←→ calculations generalized for massive case Armesto, Ma, Mehtar-Tani, Salgado, Tywoniuk [2011]



#### new challenges from data



- jet reconstruction possible in HIC Cacciari, Rojo, Salam, Soyez [2010]

- essential to understand sensitivity of algorithms to large and fluctuating

Cacciari, Salam, Soyez [2011] Armesto et al. [in preparation]

#### new challenges from data



parton energy loss calculations insufficient, by construction, to address fully reconstructed jets

## early lessons from LHC data



leading hadron suppression persistent to highest available pt

#### ear singlesonentra mperiolera Cato: Rcp Single Jet central to p



leading hadron suppression persistent to highest available pt

#### earlysing sons framperioneral Cato: Rcp Single Jet central to p





# $A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}} \quad \mathsf{E_{T1}}$

#### significant enhanced di-jet asymmetry





 $A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$ 

E<sub>T1</sub>

significant enhanced di-jet asymmetry

#### without jet deflection



lost energy recovered at large angles as soft particles



 $A_J = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T2}}$ 

E<sub>T1</sub>

#### without jet deflection

 $\int L dt = 6.7 \, \mu b^{-1}$ 

(c)

•(b)

(a)

CMS  $\int L dt = 35.1 \text{ pb}^{-1}$ 



1

1.5

2

2.5



(**a)** CMS ∫L dt = 35.1 pb

lost energy recovered at large angles as soft particles

#### going beyond parton energy loss :: dynamics of radiated quanta ::

#### transport of soft quanta away from jet



--- all jet components accumulate an average transverse momentum [Brownian motion]

$$\langle k_{\perp} \rangle \sim \sqrt{\hat{q}L}$$

-o in the presence of a medium soft modes are formed early

$$\tau \sim \frac{\omega}{k_{\perp}^2} \xrightarrow[\langle k_{\perp}^2 \rangle \sim \hat{q}\tau]{} \sim \sqrt{\frac{\omega}{\hat{q}}}$$

—o sufficiently soft modes are completely decorrelated from the jet direction

$$\omega \le \sqrt{\hat{q}L}$$

#### transport of soft quanta away from jet



Casalderrey-Solana, Milhano, Wiedemann [2010] Qin, Muller [2010] Young, Schenke, Jeon, Gale [2011] :: MARTINI

# going beyond parton energy loss :: colour exchanges with medium :: :: hadronization ::

- most branchings in parton shower occur outside the medium; hadronization likely to happen outside (asalderrey-Solana, Milhano, Quiroga-Arias [2011]



— most branchings in parton shower occur outside the medium; hadronization likely to happen outside [2011]



←→ natural explanation for non-modification of jet fragmentation functions

— most branchings in parton shower occur outside the medium; hadronization likely to happen outside [2011]



---- OR NOT

- most branchings in parton shower occur outside the medium; hadronization likely to happen outside (asalderrey-Solana, Milhano, Quiroga-Arias [2011]



---- OR NOT

←→ in-medium hadronization, but still with unmodified jet fragmentation within a specific model Loshaj,Kharzeev[2011]

#### colour flow

—o colour exchanges between parton and medium can affect hadronization irrespective of where it happens
Beraudo, Milhano, Wiedemann [2011]



- ←→ colour flow within standard parton energy calculation results in characteristic softening of leading hadron spectra [additional suppression]
- $\hookrightarrow$  further uncertainty in extraction of medium properties

#### colour flow

—o colour exchanges between parton and medium can affect hadronization irrespective of where it happens
Beraudo, Milhano, Wiedemann [2011]



- → colour flow within standard parton energy calculation results in characteristic softening of leading hadron spectra [additional suppression]
- $\hookrightarrow$  further uncertainty in extraction of medium properties
- —o modified jet hadrochemistry

Sapeta, Wiedemann [2008]

#### colour flow

—o colour exchanges between parton and medium can affect hadronization irrespective of where it happens
Beraudo, Milhano, Wiedemann [2011]



- ←→ colour flow within standard parton energy calculation results in characteristic softening of leading hadron spectra [additional suppression]
- $\hookrightarrow$  further uncertainty in extraction of medium properties
- —o modified jet hadrochemistry

```
Sapeta, Wiedemann [2008]
```

-o also, colour exchanges open new 'anomalous' channels for baryon production

Aurenche, Zakharov [2011]





more than ever exp-ph/th crosstalk essential for significant progress