New Physics in
 B_{s} Mixing \& Decay

Ulrich Haisch
 University of Oxford

Recontres de Moriond EW 2012,
La Thuile, Aosta Valley, Italy, 3-10 March 2012

Standard Model \& Beyond

- $\mathrm{B}_{\mathrm{s}}-\overline{\mathrm{B}}_{\mathrm{s}}$ oscillations encoded in elements $\mathrm{M}_{12} \& \Gamma_{12}$ of hermitian mass $\&$ decay rate matrices $\left(\mathrm{CPT} \Rightarrow \mathrm{M}_{11}=\mathrm{M}_{22}, \Gamma_{11}=\Gamma_{22}\right.$). In Standard Model (SM) leading effects due to electroweak box diagrams:

Standard Model \& Beyond

- Generic, sufficiently heavy new physics (NP) in $\mathrm{M}_{12}\left(\Gamma_{12}\right)$ can be described via effective $\Delta \mathrm{B}=2(\Delta \mathrm{~B}=1)$ interactions:

SUSY, extra dimensions, ...

Parameters \& Observables

- Model-independent parametrization of NP effects in B_{s} system:

$$
\begin{gathered}
M_{12}=\left(M_{12}\right)_{\mathrm{SM}}+\left(M_{12}\right)_{\mathrm{NP}}=\left(M_{12}\right)_{\mathrm{SM}} R_{M} e^{i \phi_{M}} \\
\Gamma_{12}=\left(\Gamma_{12}\right)_{\mathrm{SM}}+\left(\Gamma_{12}\right)_{\mathrm{NP}}=\left(\Gamma_{12}\right)_{\mathrm{SM}} R_{\Gamma} e^{i \phi_{\Gamma}}
\end{gathered}
$$

Expressed through $\mathrm{R}_{\mathrm{M}, \Gamma}, \phi_{\mathrm{M}, \Gamma} \&\left(\phi_{\mathrm{s}}\right)_{\mathrm{SM}}=\arg \left(-\left(\mathrm{M}_{12}\right)_{\mathrm{SM}} /\left(\Gamma_{12}\right)_{\mathrm{SM}}\right)$, mass $\Delta M \&$ width difference $\Delta \Gamma$, flavor-specific (e.g. semileptonic) CP asymmetry afs $_{\mathrm{s}}$ \& CP-violating (CPV) phase $\phi_{\psi \phi}$ take form

$$
\begin{aligned}
& \Delta M=(\Delta M)_{\mathrm{SM}} R_{M}, \Delta \Gamma \approx(\Delta \Gamma)_{\mathrm{SM}} R_{\Gamma} \cos \left(\phi_{M}-\phi_{\Gamma}\right), \\
& a_{f s}^{s} \approx\left(a_{f s}^{s}\right)_{\mathrm{SM}} \frac{R_{\Gamma}}{R_{M}} \frac{\sin \left(\phi_{M}-\phi_{\Gamma}\right)}{\left(\phi_{s}\right)_{\mathrm{SM}}}, \phi_{\psi \phi}=\left(\phi_{\psi \phi}\right)_{\mathrm{SM}}+\phi_{M}
\end{aligned}
$$

Parameters \& Observables

- Besides $\phi_{\psi \phi}$ (from mixed-induced, time-dependent CP asymmetry in $\left.B_{s} \rightarrow \psi \phi\right) \& a_{f_{s}}^{\mathrm{s}}$ (from tree-level $\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mathrm{D}_{\mathrm{s}}^{-} \mathrm{X}$ decay), there is a $3^{\text {rd }}$ relevant CPV quantity in B sector, i.e., like-sign dimuon charge asymmetry $A_{\mathrm{SL}}^{\mathrm{b}}$:
[DØ 1106.6308]

$$
\begin{aligned}
A_{\mathrm{SL}}^{b} & =\frac{N_{b}^{++}-N_{b}^{--}}{N_{b}^{++}+N_{b}^{--}} \\
& =C_{d} a_{f s}^{d}+\left(1-C_{d}\right) a_{f s}^{s}
\end{aligned}
$$

$N_{b}^{ \pm \pm}=\#$ of events with $\mu^{ \pm} \mu^{ \pm}$,
$C_{d} \approx[0.5,0.6] \propto$ production B_{d} / B_{s}

SM Predictions vs. Data

	SM predictions [Lenz \& Nierste, 1106.6308]	data before 2011
$\Delta \mathrm{M}\left[\mathrm{ps}^{-1}\right]$	17.3 ± 2.6	17.70 ± 0.08 [CDF]
$\Delta \Gamma\left[\mathrm{ps}^{-1}\right]$	0.087 ± 0.021	$0.154_{-0.070}^{+0.054}(0.9 \sigma)$ $[\mathrm{CDF} \& \mathrm{D} \varnothing]$
$\phi_{\psi \phi}\left[{ }^{\circ}\right]$	-2.1 ± 0.1	$-44_{-21}^{+17}(2.3 \sigma)$ $[\mathrm{CDF} \& \mathrm{D}]$
$\mathrm{A}_{\mathrm{SL}}^{\mathrm{b}}\left[10^{-4}\right]$	-2.1 ± 0.4	$-85 \pm 28(3.0 \sigma)$ $[\mathrm{D} \varnothing]$
$\mathrm{a}_{\mathrm{fs}}^{\mathrm{s}}\left[10^{-5}\right]^{\dagger}$	1.9 ± 0.3	$-1200 \pm 700(1.7 \sigma)$

${ }^{\dagger}$ calculated from measured $A_{S L}^{b} \& a_{f s}^{s}=(-4.7 \pm 4.6) \times 10^{-3}$ from BaBar \& Belle
[HFAG, 1010.1589]

Implications of Before 2011 Data

- Assuming NP in M_{12} only, SM \& models without a new phase (e.g. mSUGRA) are disfavored by more than 3σ
[see e.g. UTfit, 0803.0659;
Lenz, Nierste \& CKMfitter, 1008.1593; ...]
[Bobeth \& UH, 1109.1826]

Implications of Before 2011 Data

- Assuming NP in M_{12} only, SM \& models without a new phase (e.g. mSUGRA) are disfavored by more than 3σ
[see e.g. UTfit, 0803.0659;
Lenz, Nierste \& CKMfitter, 1008.1593; ...]
- But χ^{2} of data not great. In fact, for NP in M_{12} only \& $\mathrm{a}_{\mathrm{fs}}=\left(\mathrm{a}_{\mathrm{fs}}\right)_{\mathrm{SM}}$, $A_{S L}^{b}$ measurement implies:

$$
S_{\psi \phi}=\sin \phi_{\psi \phi}=-2.5 \pm 1.3
$$

[see e.g. Dobrescu, Fox \& Martin, 1005.4238;
Ligeti et al., 1006.0432; ...]

If NP in M_{12}, Which Kind?

In all NP models without direct CPV in decay (like SUSY, little Higgs (LH), Randall-Sundrum (RS) scenarios, ...), observables $\mathrm{af}_{\mathrm{f}}^{\mathrm{s}} \& \mathrm{~S}_{\psi \phi}$ strongly correlated:

$$
\begin{gathered}
\frac{a_{f s}^{s}}{\left(a_{f s}^{s}\right)_{\mathrm{SM}}} \approx-240 \frac{S_{\psi \phi}}{R_{M}}, \\
R_{M}=1.05 \pm 0.16
\end{gathered}
$$

[see e.g. Ligeti, Papucci \& Perez, hep-ph/0604112;
Blanke et al., 0805.4393, 0809.1073;
Altmannshofer et al., 0909.1333;

Casagrande et al., 0912.1625; ...]

If NP in M_{12}, Which Kind?

- Even a clear signal of NP in B_{s} mixing will not allow to pinpoint nature of beyondSM dynamics. One needs to study correlations with other channels such as $B_{s} \rightarrow \mu^{+} \mu^{-}$

Unfortunately, given great performance of LHC, one starts walking on thin ice ...

[see e.g. talk by Langenegger for CMS, http://indico.cern.ch/conferenceDisplay.py?confId=178806]

SM Predictions vs. Data

	SM predictions [Lenz \& Nierste, 1106.6308]	data before 2011	data after 2011
$\Delta \mathrm{M}\left[\mathrm{ps}^{-1}\right]$	17.3 ± 2.6	17.70 ± 0.08 [CDF]	$\begin{aligned} & 17.73 \pm 0.05 \\ & {[\mathrm{CDF} \& \mathrm{LHCb}]} \end{aligned}$
$\Delta \Gamma\left[\mathrm{ps}^{-1}\right]$	0.087 ± 0.021	$0.154_{-0.070}^{+0.054}(0.9 \sigma)$ [CDF \& Dø]	
$\phi_{\psi \phi}\left[{ }^{\circ}\right]$	-2.1 ± 0.1	$-44_{-21}^{+17}(2.3 \sigma)$ [CDF \& DØ]	$\begin{gathered} 1.7 \pm 10.0 \\ {[\text { LHCb] }} \end{gathered}$
$A_{\text {SL }}^{\mathrm{b}}\left[10^{-4}\right]$	-2.1 ± 0.4	$\begin{gathered} -85 \pm 28(3.0 \sigma) \\ {[\mathrm{D} \varnothing]} \end{gathered}$	$\begin{gathered} -79 \pm 20(3.9 \sigma) \\ {[\mathrm{D} \varnothing]} \end{gathered}$
$\mathrm{afs}_{\text {fs }}^{\text {s }}\left[10^{-5}\right]^{\dagger}$	1.9 ± 0.3	$-1200 \pm 700(1.7 \sigma)$	$-1300 \pm 800(1.50)$

${ }^{\dagger}$ calculated from measured $A_{S L}^{b} \& a_{f s}^{s}=(-4.7 \pm 4.6) \times 10^{-3}$ from BaBar \& Belle
[HFAG, 1010.1589]

Implications of After 2011 Data

- For $\left(\mathrm{M}_{12}\right)_{\mathrm{NP}} \neq 0,\left(\Gamma_{12}\right)_{\mathrm{NP}}=0$, fit to new data only slightly better than SM hypothesis $\left(\chi^{2} /\right.$ dofs $=$ $3.3 / 2$ vs. $\chi^{2} /$ dofs $=3.4 / 2$)
[Bobeth \& UH, 1109.1826;
also Lenz, Nierste \& CKMfitter, 1203.0238]
[Bobeth \& UH, 1109.1826]

Implications of After 2011 Data

\square For $\left(\mathrm{M}_{12}\right)_{\mathrm{NP}} \neq 0,\left(\Gamma_{12}\right)_{\mathrm{NP}}=0$, fit to new data only slightly better than SM hypothesis $\left(\chi^{2} /\right.$ dofs $=$ $3.3 / 2$ vs. $\chi^{2} /$ dofs $=3.4 / 2$)
[Bobeth \& UH, 1109.1826; also Lenz, Nierste \& CKMfitter, 1203.0238]

- In fact, scenario with NP in Γ_{12} only, allows for a significantly better fit ($\chi^{2} /$ dofs $=0.2 / 2$) than M_{12}-only assumption
[Bobeth \& UH, 1109.1826]
[Bobeth \& UH, 1109.1826]

Implications of After 2011 Data

For $\left(\mathrm{M}_{12}\right)_{\mathrm{NP}} \neq 0,\left(\Gamma_{12}\right)_{\mathrm{NP}}=0$, fit to new data only slightly better than SM hypothesis $\left(\chi^{2} /\right.$ dofs $=$ $3.3 / 2$ vs. $\chi^{2} /$ dofs $=3.4 / 2$)
[Bobeth \& UH, 1109.1826; also Lenz, Nierste \& CKMfitter, 1203.0238]

- In fact, scenario with NP in Γ_{12} only, allows for a significantly better fit ($\chi^{2} /$ dofs $=0.2 / 2$) than $\mathrm{M}_{12 \text {-only }}$ assumption
[Bobeth \& UH, 1109.1826]

Given latter result, worthwhile to ask: how big can NP in Γ_{12} be?

NP in $\Gamma_{12}:(\bar{s} \mathrm{~b})(\bar{\tau} \tau)$ Operators

- While any operator ($\bar{s} b) f$ with f leading to a flavor-neutral final state of 2 or more fields $\&$ mass less than m_{b} can alter Γ_{12}, possible f's in practice limited, because $B_{s} \rightarrow f \& B_{d} \rightarrow X_{s} f$ channels with f involving light states strongly constrained. One exception are B decays to tau pairs
[see e.g. Dighe, Kundu \& Nandi, 0705.4547, 1005.1629;
Bauer \& Dunn, 1006.1629;
Alok, Baek \& London, 1010.1333;
Kim, Seo \& Shin, 1010.5123;
Bobeth \& UH, 1109.1826; ...]

NP in $\Gamma_{12}:(\bar{s} \mathrm{~b})(\bar{\tau} \tau)$ Operators

- While any operator ($\bar{s} b$) f with f leading to a flavor-neutral final state of 2 or more fields $\&$ mass less than mb can alter Γ_{12}, possible f's in practice limited, because $B_{s} \rightarrow f \& B_{d} \rightarrow X_{s} f$ channels with f involving light states strongly constrained. One exception are B decays to tau pairs
- Can study size of NP in Γ_{12} using an effective theory containing a complete set of ($\overline{\mathrm{s}} \mathrm{b}$) $(\tau \bar{\tau})$ operators ($\mathrm{A}, \mathrm{B}=\mathrm{L}, \mathrm{R}$):

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}}^{\mathrm{NP}}=\frac{4 G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i} C_{i} Q_{i}, & Q_{S, A B}=\left(\bar{s} P_{A} b\right)\left(\bar{\tau} P_{B} \tau\right), \\
P_{L, R}=\left(1 \mp \gamma_{5}\right) / 2, & Q_{V, A B}=\left(\bar{s} \gamma_{\mu} P_{A} b\right)\left(\bar{\tau} \gamma^{\mu} P_{B} \tau\right) \\
& Q_{T, A}=\left(\bar{s} \sigma_{\mu \nu} P_{A} b\right)\left(\bar{\tau} \sigma^{\mu \nu} P_{A} \tau\right)
\end{aligned}
$$

NP in $\Gamma_{12}:(\bar{s} \mathrm{~b})(\bar{\tau} \tau)$ Operators

- Assuming single operator dominance, calculation of

$$
\left(\Gamma_{12}\right)_{\mathrm{NP}} \propto C_{i} C_{j} \operatorname{Im}\left[{ }_{s}^{b}\right.
$$

translates into

$$
\frac{\left(R_{\Gamma}\right)_{S, A B}<1+(0.4 \pm 0.1)\left|C_{S, A B}\right|^{2},}{\left(R_{\Gamma}\right)_{V, A B}<1+(0.4 \pm 0.1)\left|C_{V, A B}\right|^{2}}
$$

$$
\left(R_{\Gamma}\right)_{T, A}<1+(0.9 \pm 0.2)\left|C_{T, A}\right|^{2}
$$

which implies that Ci's have to be around 1 (i.e. size of leading SM current-current coefficient) or larger to describe data well

Bounds on ($\bar{s} b)(\bar{\tau} \tau)$ Operators

- Direct constraints arise from
- $\mathrm{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}\right)<3.3 \cdot 10^{-3}(90 \% \mathrm{CL})$
[Flood for BaBar, PoS ICHEP2010, 234 (2010)]

${ }^{+} \operatorname{Br}\left(\mathrm{B}_{\mathrm{s}} \rightarrow \tau^{+} \tau^{-}\right), \mathrm{Br}\left(\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \tau^{+} \tau^{-}\right) \leq 5 \%$
[see e.g. Grossman, Ligeti \& Nardi, hep-ph/9607473; Dighe, Kundu \& Nandi, 1005.4051]

Bounds on purely leptonic $\&$ inclusive semileptonic Br's derived from ratio of $\mathrm{B}_{\mathrm{d}, \mathrm{s}}$ lifetimes ${ }^{\dagger} \& \mathrm{LEP}$ searches of B decays with missing energy. Similar limits follow from charm counting
${ }^{\dagger}$ bound improved to around 3.5% by LHCb measurement of $\Delta \Gamma$
[LHCb-CONF-2011-049]

Bounds on ($\bar{s} b)(\bar{\tau} \tau)$ Operators

- Indirect constraints due to operator mixing \& matrix elements: ${ }^{\dagger}$

$$
\begin{array}{ll}
Q_{T, R} \rightarrow Q_{7}, & Q_{V, L A} \rightarrow Q_{9}, \\
Q_{T, L} \rightarrow Q_{7}^{\prime} & Q_{V, R A} \rightarrow Q_{9}^{\prime}
\end{array}
$$

$$
Q_{S, A B} \rightarrow \vec{\epsilon}_{1} \cdot \vec{\epsilon}_{2},
$$

$$
Q_{S, A B}, Q_{V, A B} \rightarrow \vec{\epsilon}_{1} \times \vec{\epsilon}_{2}
$$

Bounds on Cis derived by taking into account measurements of $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \gamma(\mathrm{Br}), \mathrm{B} \rightarrow \mathrm{K}^{*} \gamma\left(\mathrm{Br}, \mathrm{S}, \mathrm{A}_{\mathrm{I}}\right), \mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{l}^{+1^{-}}(\mathrm{Br}), \mathrm{B} \rightarrow \mathrm{Kl}^{+} 1^{-}$ $(\mathrm{Br}), \mathrm{B} \rightarrow \mathrm{K}^{*} \mathrm{l}^{+} \mathrm{l}^{-}\left(\mathrm{Br}, \mathrm{A}_{\mathrm{FB}}, \mathrm{F}_{\mathrm{L}}\right) \&$ upper limit on $\mathrm{B}_{\mathrm{s}} \rightarrow \gamma \gamma(\mathrm{Br})$
${ }^{\dagger} \mathrm{Q}_{\mathrm{s}, \mathrm{AB}}$ does not mix into $\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{l}^{+} \mathrm{l}^{-}$but has non-zero $\mathrm{b} \rightarrow \mathrm{s} \gamma \gamma$ elements

Upper Bounds on Wilson Coefficients

	limit on $\mathrm{C}_{\mathrm{i}}(\mathrm{mb})$	limit on Λ_{NP} for $\mathrm{C}_{\mathrm{i}}^{\Lambda}=1$	process
S, AB	<0.8	1.3 TeV	$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$
V, AB	<0.8	1.0 TeV	$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$
T, L	<0.06	3.2 TeV	$\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{l}^{+} \mathrm{l}^{-}$
T, R	<0.09	2.7 TeV	$\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{l}^{+} \mathrm{l}^{-}$

- Assuming single operator dominance $\&$ complex C_{i}, one obtains quite loose bounds on scalar $\&$ vector operators, whereas tensor contributions are severely constrained, mostly due to $B \rightarrow X_{s} \gamma$

After 2011 Data: $\left(\Gamma_{12}\right)_{\mathrm{NP}}$ Due to $\mathrm{b} \rightarrow \mathrm{s} \boldsymbol{\tau}^{+} \boldsymbol{\tau}^{-}$

- Upper limit on C_{i} translate into:
[Bobeth \& UH, 1109.1826]

$$
\begin{aligned}
& \frac{\left(R_{\Gamma}\right)_{S, A B}<1.4,}{\left(R_{\Gamma}\right)_{V, A B}<1.3,} \\
& \left(R_{\Gamma}\right)_{T, L}<1.004, \\
& \left(R_{\Gamma}\right)_{T, R}<1.008
\end{aligned}
$$

Largest correction due to scalar operator can change $\left|\Gamma_{12}\right|_{\text {SM }}$ by up to 40%. Easing tension in Bmeson sector is hence possible ($\chi^{2} /$ dofs $>2.2 / 2$), but not a full
 resolution of issue

Lepto-Quark Contributions to Γ_{12}

- For $\mathrm{SU}(2)$ singlet scalar lepto-quarks (LQs) relevant coupling

$$
\mathcal{L}_{\mathrm{LQ}} \ni\left(\lambda_{R \tilde{S}_{0}}\right)_{i j}\left(\bar{d}_{j}^{c} P_{R} e_{i}\right) \tilde{S}_{0}+\text { h.c. }
$$

leads to $\Delta B=1 \& \Delta B=2$ interactions

$$
\mathcal{L}_{\text {eff }} \ni-\frac{\left(\lambda_{R \tilde{S}_{0}}\right)_{32}\left(\lambda_{R \tilde{S}_{0}}\right)_{33}}{2 M_{\tilde{S}_{0}}^{2}} Q_{V, R R}
$$

which give a real ratio (btw. rsm ≈-200)

$$
r_{\mathrm{LQ}}=\frac{\left(M_{12}\right)_{\mathrm{LQ}}}{\left(\Gamma_{12}\right)_{\mathrm{LQ}}}=2084\left(\frac{M_{\tilde{S}_{0}}^{2}}{250 \mathrm{GeV}}\right)
$$

Predictions for SU(2) Singlet Scalar LQs

[Bobeth \& UH, 1109.1826]

- Even a light LQ fails to describe data \& parameter space shrinks further for heavier LQs. Visible cosine-, sine-like correlations \& $\Delta \Gamma<(\Delta \Gamma)_{\text {SM }}$ model-independent feature

No New Physics in B_{s} Mixing \& Decay

Ulrich Haisch
 University of Oxford

Recontres de Moriond EW 2012,
La Thuile, Aosta Valley, Italy,
3-10 March 2012

Best-Fit Solutions to Data

	before 2011	after 2011
R_{M}	1.05 ± 0.16	1.05 ± 0.16
$\phi_{M}\left[{ }^{\circ}\right]$	-46 ± 19	1.5 ± 10.0
R_{Γ}	3.3 ± 1.5	3.4 ± 1.7
$\phi_{\Gamma}\left[{ }^{\circ}\right]$	7 ± 30	58 ± 23

- Even before measurements of B_{s}-mixing observables by LHCb, a perfect 4-parameter fit $\left(\chi^{2}=0\right)$ to data required large corrections in Γ_{12}. New data set favors both enhanced magnitude R_{Γ} \& phase $\phi \Gamma$

Details on Bounds on Wilson Coefficients

$\mathrm{C}_{i}(\mathrm{mb})$	$\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \mathrm{T}^{+} \mathrm{T}^{-}$	$\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{T}^{+} \mathrm{T}^{-}$	$\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{s}} \mathrm{t}^{+} \mathrm{T}^{-}$	$\mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{H}-\mathrm{l}$	$\mathrm{B}_{\mathrm{s}} \rightarrow \gamma \gamma$
S, AB	<0.8	≤ 0.7	≤ 9.6	-	$<3.4,2.3$
$\mathrm{~V}, \mathrm{AB}$	<0.8	≤ 1.4	≤ 4.8	$<1.1,1.0$	<5.9
$\mathrm{~T}, \mathrm{~A}$	<0.4	-	<1.4	$<0.06,0.09$	-
7	-	-	-	<0.29	<2.2
7^{\prime}	-	-	-	<0.19	<1.9
9	-	-	-	<2.0	-
9^{\prime}	-	-	-	<1.0	-

Z^{\prime} Contributions to Γ_{12}

- For left-handed Z^{\prime} boson relevant couplings

$$
\mathcal{L}_{Z^{\prime}} \ni \frac{g}{\cos \theta_{W}}\left[\left(\kappa_{s b}^{L} \bar{s} \gamma^{\mu} P_{L} b+\text { h.c. }\right)+\kappa_{\tau \tau}^{L} \bar{\tau} \gamma^{\mu} P_{L} \tau\right] Z_{\mu}^{\prime}
$$

give rise to $\Delta B=1 \& \Delta B=2$ interactions

$$
\mathcal{L}_{\text {eff }} \ni-\frac{8 G_{F}}{\sqrt{2}} \frac{M_{Z}^{2}}{M_{Z^{\prime}}^{2}} \kappa_{s b}^{L} \kappa_{\tau \tau}^{L} Q_{V, L L}
$$

which again produce a real ratio

$$
r_{Z^{\prime}}=\frac{\left(M_{12}\right)_{Z^{\prime}}}{\left(\Gamma_{12}\right)_{Z^{\prime}}}=6.0 \cdot 10^{5}\left(\frac{M_{Z^{\prime}}}{250 \mathrm{GeV}} \frac{1}{\kappa_{\tau \tau}^{L}}\right)^{2}
$$

Predictions for Left-handed Z^{\prime}

[Bobeth \& UH, 1109.1826]

- Left-handed Z^{\prime} provides an even worse description of data than LQs. Model-independent correlations \& $\Delta \Gamma<(\Delta \Gamma)_{\mathrm{SM}}$ also present in case of new neutral vector boson

Further Comments on NP in $\Gamma_{12}^{\mathrm{s}, \mathrm{d}}$

- Bounds on $(\bar{s} b)(\bar{\tau} \mu)$ are stronger by roughly a factor of 7 than those on $(\overline{\mathrm{s}} \mathrm{b})(\bar{\tau} \tau)$ operators, since $\mathrm{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{ \pm} \mu^{\mp}\right)<7.7 \cdot 10^{-5}$ compared to $\mathrm{Br}\left(\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}\right)<3.3 \cdot 10^{-3}$. Hence, contributions from ($\bar{s} b)(\bar{\tau} \mu)$ operators cannot improve fit to B_{s} data notable
- An contribution from $(\overline{\mathrm{d}} \mathrm{b})(\bar{\tau} \tau)$ operators to Γ_{12}^{d} large enough to explain data excluded by bound $\operatorname{Br}\left(\mathrm{B} \rightarrow \tau^{+} \tau^{-}\right)<4.1 \cdot 10^{-3}$. Case of $\tau^{ \pm} \mu^{\mp}$ final state even less favorable
- My naive guess is that ($\overline{\mathrm{d}} \mathrm{b})(\overline{\mathrm{c}} \mathrm{c})$ operators are heavily constrained (should be numerically smaller than QCD/electroweak penguins in SM) by exclusive B decays $\&$ thus also cannot resolve tension in B-mixing sector. A dedicated analysis is however missing

