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Why should we look at                       ? K+ → π+π0γ

Powerful tools to constrain New Physics

FCNC proceed through Loop (GIM breaking) effects 

Suppressed in the SM
s→

dγ

B̄ → Xsγ

Br(B̄ → Xsγ)TH = 3.15(23)× 10−4

Br(B̄ → Xsγ)EXP = 3.55(26)× 10−4

K+ → π+π0γ

M. Misiak et al., PRL 98:022002, 2007. 

 E. Barberio et al., hep-ex/0603003v1.

Takes place deep within the non- 
perturbative regime of QCD

(♭)

(♭)

(♮)

(♮)

➡ SM prediction ?
➡ SD sensitivity  ?χPT
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Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,

and are thus entirely fixed from the Lagrangian (2.7):

q̄I
LγµqJ

L = i
F 2

2
(DµU †U)JI , q̄I

RγµqJ
R = i

F 2

2
(DµUU †)JI . (2.8)

The SU(3) breaking corrections start at O(p4) and are mild thanks to the Ademollo-Gatto theo-

rem [13]. They can be precisely estimated from the charged current matrix elements, i.e. from K"3

decays. See ref. [14] for a detailed analysis.

The chiral realization of the tensor currents in Q±
γ is more involved and starts at O(p4) since two

derivatives or a field strength tensor are needed to get the correct Lorentz structure. Further, it cannot

be entirely fixed but involves specific low-energy constants. By imposing charge conjugation and parity

invariance (valid for QCD), the antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5,

– 5 –

J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,

and are thus entirely fixed from the Lagrangian (2.7):

q̄I
LγµqJ

L = i
F 2

2
(DµU †U)JI , q̄I

RγµqJ
R = i

F 2

2
(DµUU †)JI . (2.8)

The SU(3) breaking corrections start at O(p4) and are mild thanks to the Ademollo-Gatto theo-

rem [13]. They can be precisely estimated from the charged current matrix elements, i.e. from K"3
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 SM prediction ?

∂2Γ+

∂T ∗
π∂W

2
=

∂2Γ+
IB

∂T ∗
π∂W

2

�
1− 2 cos(δ11 − δ20)m

2
πm

2
KXEW

2 +m4
πm

4
K(X2

E +X2
M )W 4

�

Adopting the NA48/2   differential branching parametrization :

IB INT DE

(♭)

(♭)  NA48/2 Collaboration, EPJ C68 (2010) 75.
(♮) G. D’Ambrosio and G. Isidori, Z. Phys. C65 (1995) 649.
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Figure 3. Basic topologies for the K → ππγ loops, with the vertices colored according to the conventions of
figure 2. The photon is to be attached in all possible ways. However, in accordance with Low’s theorem, most
of these diagrams renormalize the O(p2) bremsstrahlung process, leaving only genuine substracted three-point
loops (thus involving at least one charged meson) for the direct emission amplitudes. The transition is ∆I = 1/2
(3/2) when the weak vertex is K+π−η or K0π+π− (K+π−π0). The counterterms and Q−

γ contribute only to
K+ → π+π0γ and K0 → π+π−γ.

This is much smaller than the O(1) expected for the Ni on dimensional grounds or from factoriza-

tion [51], but confirms the picture described in section 2.1.3. Evidently, so long as the Ni are not

better known, we cannot get an unambiguous bound on ReC−
γ . Still, barring a large fortuitous

cancellation,
|Re C−

γ |
GF mK

! 0.1 . (3.11)

Note that this bound is rather close to our naive estimate (2.13) of the charm-quark contribution to

the real photon penguin in the SM.

Direct CP-violating asymmetries. CP-violation in K+ → π+π0γ is quantified by the parameter

ε′+0γ , defined from

Re

(

EDE

eAIB

)

(

K± → π±π0γ
)

≈
Re EDE

eRe AIB

[

cos(δDE − δ2
0) ∓ sin(δDE − δ2

0)ε
′
+0γ

]

, (3.12)

as [12]

ε′+0γ ≡
Im EDE

ReEDE
−

ImAIB

ReAIB
. (3.13)

To reach this form, we use the fact that both ImEDE and ImAIB change sign under CP , but not the

strong phase δDE and δ2
0 , and work to first order in ImAIB/Re AIB. Since E2 has the same strong

phase as AIB , and higher multipoles are completely negligible, we can replace EDE by the dipole

emission E1 to an excellent approximation, so that δDE = δ1
1 .

Plugging eq. (3.12) in eq. (3.4), we get the differential asymmetry, which can be integrated

over phase-space according to various definitions. Still, no matter the choice, these phase-space

integrations tend to strongly suppress the overall sensitivity to ε′+0γ since the rate is dominantly

CP-conserving [12]. For example, NA48/2 [5] use the partially integrated asymmetry

aCP (W 2) =
∂Γ+/∂W 2 − ∂Γ−/∂W 2

∂Γ+/∂W 2 + ∂Γ−/∂W 2
=

−2m2
π+m2

KXEW 2 sin(δDE − δ2
0) ε′+0γ

1 + 2m2
π+m2

KXEW 2 + m4
π+m4

K(|XE|2 + |XM |2)W 4
, (3.14)
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the theoretical prediction reads :

X loop
E

XCT
E

G8 G27

(♮)

+XCT
E−10.2 −7.4XTH

E = ( ) GeV−4

Comparing with experiment   :
(♭)

XEXP
E = (−24± 4± 4) GeV−4

implies

0.37(32) CT contributions are 
now under control

3

XLoop
E

XCT
E /XLoop

E =



 SD sensitivity ?  DCPV charge asymmetry

��+0γ =
ImADE

ReADE
− ImAIB

ReAIB
≈ −2

3

√
2|��|
ω

�
1 +

Ω

1− Ω
ω

�
+ 3ImCγ

In the SM : −0.6(3) 10−4
Ω ∈ [−1, 0.8]

NLO,CT,

Experiment still allows large NP effects : ��exp+0γ = −0.21± 0.34
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a. b.

c.

Figure 14. Loop-level FCNC scenario, with all the electroweak operators as well as Q±
γ,g simultaneously turned

on, but imposing ImC+
γ = ±1.5 ImC−

g . (a) Correlation between the electroweak and gluonic contributions to
ε′, imposing |Re(ε′/ε)NP| < 2 Re(ε′/ε)exp. (b) The Im C+

γ range as a function of the fine-tuning between
Re(ε′/ε)EW and Re(ε′/ε)g. (c) The corresponding contours in the ImCV," − Im C+

γ plane. In (a) and (c), the
lighter (darker) colors denote destructive (constructive) interference between QA and Q+

γ in KL → π0#+#−.

4.3.3 Minimal Supersymmetric Standard Model

The MSSM with R-parity is a particular implementation of the loop-level FCNC scenario discussed in

the previous section. All the bounds derived there are thus not only valid, but could become tighter.

Indeed, the various FCNC could be more directly correlated once the NP dynamics is specified. In

addition, the MSSM introduces only a finite number of new sources of flavor-breaking through its

soft-breaking squark mass terms and trilinear couplings.

The most important correlation is that between the gluonic and photonic penguins, as analyzed

in details in ref. [15, 81]. Both can be generated by gluino-down squark loops, so that [110]

C±
γ (mg̃) =

παS(mg̃)

mg̃

[

(δD
LR)21 ± (δD

RL)21
]

F (xqg), F (xqg) ≈ F (1) =
2

9
, (4.37a)

C±
g (mg̃) =

παS(mg̃)

mg̃

[

(δD
LR)21 ± (δD

RL)21
]

G(xqg), G(xqg) ≈ G(1) = −
5

18
, (4.37b)

where xqg = m2
q̃/m

2
g̃, mq̃(g̃) the squark (gluino) mass, and F (xqg), G(xqg) the loop functions. The

chirality flips are induced by the SU(2)L breaking trilinear term AD, parametrized through the mass

– 41 –

A 80 % EW-QCD
NP cancellation in

MSSM :
Re(��/�)

allows ImCγ |NP ≈ 10−2

ImCγ |NP

NA48/2 (2010)

• Close to                         upper 
bound

• Corresponds to the maximum   
allowed value for 

KL → π0e+e−

�K
ImδD,12

LR

See also : 
- G. Colangelo et al., PLB 470 (1999) 134.
- A. J. Buras et al., NPB 566 (2000)3.

+1.2(4) 10−4

4

ImCV |NP

Z
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∗
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→
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V
s̄γ

µ
d
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l̄γ
µ
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 Thank You.

•The             transition is under theoretical control.
     Crucial to complement 

•The             transition can resolve the physics content of epsilon-prime,
 by unravelling SM or NP cancellations between EW and QCD penguins.

• So, radiative decays must be included in the physics program of futur 
experiments : NA62 (Cern) / K0TO (J-Parc) / ORKA (Fermilab).

s → dγ

s → dγ

b → sγ, µ → eγ, . . .

 As exemplified in                   :K+ → π+π0γ

 Conclusions :

5
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Details on        :XTH

E

XTH

E = XLoop

E +XCT

E

The loop contribution is expanded in multipoles : XLoop

E = X1

E +XHigher

E

All over the phase-space :

|XHigher

E /X1

E | ≤ 2.5% |∆XEXP
E /XEXP

E | ∼ 23%

Over the experimental phase-space        is almost flat :X1
E

X1
E ≈ 3G8/G27

40π2F 2
πm

2
K

�
−0.260− 0.051W + 0.089

T ∗
π

mK

�

In order to compare with experiment we average over the experimental 
phase-space :

XLoop
E → �X1

E�T∗
π≤80 MeV,0.2≤W≤0.9 = −17.6 GeV−4

See slide 37



The full picture :
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Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,

and are thus entirely fixed from the Lagrangian (2.7):

q̄I
LγµqJ

L = i
F 2

2
(DµU †U)JI , q̄I

RγµqJ
R = i

F 2

2
(DµUU †)JI . (2.8)

The SU(3) breaking corrections start at O(p4) and are mild thanks to the Ademollo-Gatto theo-

rem [13]. They can be precisely estimated from the charged current matrix elements, i.e. from K"3

decays. See ref. [14] for a detailed analysis.

The chiral realization of the tensor currents in Q±
γ is more involved and starts at O(p4) since two

derivatives or a field strength tensor are needed to get the correct Lorentz structure. Further, it cannot

be entirely fixed but involves specific low-energy constants. By imposing charge conjugation and parity

invariance (valid for QCD), the antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5,
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Real photons

Heff = CL,R
γ s̄R,Lσ

µνdL,R Fµν

+CL,R
γ∗ s̄L,Rγ

νdL,R ∂µFµν

LD / SD factorized
for real photons

Qγ /∈ LCT
8,27,ew8

LCT
8,27,ew



Semi-Leptonic NP operators basis : 
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both QL,R
γ contribute to all the decays in table 1, since C−

γ = +(−)C+
γ when CR(L)

γ is turned on.

Thus, we give in eq. (4.18) the bounds on ImC+
γ , which directly translates as maximal values for all

the direct CP-asymmetries (4.1), (4.3). Since leptonic universality holds for Q±
γ , the tightest bound

from KL → π0e+e− must be satisfied, i.e.

− 0.03 <
Im C+

γ

GF mK
< 0.04 . (4.19)

This represents only a slight extension of the range (4.4), obtained in the absence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in eq. (4.16), even though they could

arise from leptoquark exchanges. The reason is that they cannot alter the bounds (4.18) if we write

them in SU(2)L ⊗ U(1)Y invariant forms. The only four-fermion operators able to interfere with the

vector ones is QT," of eq. (4.9), but it must here be replaced by

QL
T," = s̄σµνd ⊗ L̄σµνE, QR

T," = s̄σµνd ⊗ ĒσµνL . (4.20)

Each of these operators has a pseudotensor piece s̄σµνd ⊗ #̄σµνγ5# which is the only current able to

produce the lepton pair in a 1+− state [44]. There is thus no entanglement, and QL
T," and QR

T," are

both directly bounded by the total KL → π0#+#− rate. Hence numerically, the bounds are similar to

those in eq. (4.18), and eq. (4.19) is not affected.

4.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic operators, while the

HPheno basis maximally decouples them. An intermediate picture emerges if the NP generates FCNC

only at the loop level. This can be due to some discrete symmetries (like R-parity) or to some gen-

eralized GIM mechanism. By construction, most NP models are of this type, for example the MSSM

(see section 4.3.3), little Higgs [100–102], left-right symmetry [62, 103], fourth generation [104, 105],

some extra dimension models [106],. . . , because the loop suppression of the FCNC naturally allows

for the NP particles to be lighter, hopefully within the range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the SM. Indeed,

the NP should induce the quark flavor transition s → d, but the lepton pair is flavor-diagonal and

could still be produced by SM currents, i.e., γ and/or Z bosons. So, in the absence of new vector

interactions, the SM basis is adequate:

HPB = −
GF α√

2
(CZ QZ + CA QA + CB QB) + CL,R

γ QL,R
γ + h.c. , (4.21)

with (s2
W ≡ sin2 θW = 0.231)

Z penguin : QZ ≡ s2
W QL + (1 − s2

W )Q′
L + 2s2

W QR , (4.22a)

γ∗ penguin : QA ≡
s2
W

4
(QL − Q′

L + 2QR) , (4.22b)

W boxes : QB ≡ −
3

2
QL −

5

2
Q′

L . (4.22c)
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In the presence of NP at the loop-level, it is natural to use the SM-like QL,R
γ operators of eq. (4.16)

since the chirality flip is a priori different for the L → R and R → L transitions. Indeed, even

though the drastic SM scaling CL
γ ∼ ms # CR

γ ∼ md needs not survive in the presence of NP, it is

nevertheless expected that (CL
γ + CR

γ )/(CL
γ − CR

γ ) is of O(1).

The QL, Q′
L and QR operators are never independent in this scenario, even before the electroweak

symmetry breaking takes place. Indeed, though there is a one-to-one correspondence between the

W µ
3 penguin and Q′

L, the Bµ penguin generates both QL and QR with a fixed (“fine-tuned”) relative

coefficient. Combined with eq. (4.17), the transformation back to the phenomenological basis is







Cν,#

CV,#

CA,#






=

1

2







1 0 −4

4s2
W − 1 s2

W 1

1 0 −1













CZ

CA

CB






, (4.23)

while the QL,R
γ operators are related to the Q±

γ as in eq. (4.16). In the SM without QCD, the

semileptonic coefficients are directly given in terms of the Inami-Lim functions as (beware that the

SM contributions are not included in HPB, which parametrizes only the NP contributions) [6]

CSM
A = −λtD0(xt)/πs2

W , CSM
Z = −λtC0(xt)/πs2

W , CSM
B = −λtB0(xt)/πs2

W , (4.24)

so the HPB basis coincides with Penguin-Box expansion of ref. [107]. Remark that lepton universality

is strictly enforced to match the physical picture of NP entering only for the s → d penguins, but this

can easily be lifted. Also, (pseudo)scalar or (pseudo)tensor operators are not introduced, as none of

the SM penguins can produce them.

In the SM, only specific combinations of the electroweak penguins and boxes are gauge invari-

ant [107]. Those combinations are precisely those entering into Cν,#, CV,#, and CA,#, since their

operators are directly producing different physical states. Of course, by construction, the HGauge

basis (4.16) is also gauge invariant. To check this starting with the SM expressions (4.24) requires

first extending the basis (4.21) to differentiate the boxes according to the weak isospin state of the

lepton pairs [107]

QB,±1/2 ≡
1

2
(QL ± Q′

L) ⇔

(

QB

Q′
B

)

=

(

−4 1

−1 1

)(

QB,+1/2

QB,−1/2

)

. (4.25)

The combination QB occurs in eq. (4.22) because its Wilson coefficient is separately gauge invariant,

see ref. [107], while Q′
B is redundant once the gauge is fixed (we work in the t’Hooft-Feynman gauge).

So, if one insists on gauge invariance, the HPB basis collapses either onto the HPheno basis or

the HGauge basis. Still, using directly the HPB basis for parametrizing NP makes sense because its

operators encode different physics [107, 108]. Indeed, the dominant NP contribution in the Z penguin

effectively comes from a dimension-four operator after electroweak symmetry breaking [109], while

the γ∗ penguin is of dimension six. The box operator QB is there to complete the basis, but is

rather suppressed in general. Finally, the magnetic operators QL,R
γ are separately gauge-invariant, of

dimension five after the electroweak symmetry breaking, and require a chirality flip mechanism. So,

it is only if there is a new gauge boson, and a corresponding new penguin not necessarily aligned with
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For comparison, the SM prediction is ∓0.31(8) × Im λt. So, there would be no visible effects for

δC7γ(µEW ) ∈ [−0.14, 0.06], and at most a factor four enhancement for δC7γ(µEW ) ∈ [1.42, 1.62].

This is hardly sufficient to push any of the asymmetries within the experimentally accessible

range, while the impact on KL → π0$+$− would be buried in the theoretical errors, see figure 9.

However, it is well-known that MFV is particularly effective for K physics since it suppresses the NP

contributions by the small V ∗
tsVtd ∼ 10−4. So, this is the best place to test MFV. A deviation with

respect to the strict ansatz (4.13) could lead to visible effects.

4.2 Tree-level FCNC

The basis of operators in eq. (4.6) maximally breaks the SU(2)L ⊗ U(1)Y symmetry. Neutrinos are

completely decoupled from the charged leptons, and the vector and axial-vector operators (as well

as Q+
γ and Q−

γ ) maximally mix currents of opposite chiralities. To be specific, the SU(2)L ⊗ U(1)Y
invariant basis [91] is, after projecting the hadronic currents of semileptonic operators on their vector

components,

HGauge = −
GF α√

2

∑

"=e,µ,τ

(CL," QL," + C ′
L," Q′

L," + CR," QR,") + CL,R
γ QL.R

γ + h.c. , (4.16)

QL ≡ s̄γµd ⊗ L̄γµL , Q′
L ≡ s̄γµd ⊗ L̄γµσ3L , QR ≡ s̄γµd ⊗ ĒγµE ,

QL
γ =

Qde

16π2v
s̄RσµνdL H∗ Fµν , QR

γ =
Qde

16π2v
s̄LσµνdR H Fµν ,

with LT = (ν", $)L and E = $R. It is related to the phenomenological basis (4.6) through nearly

democratic transformations






Cν,"

CV,"

CA,"






=

1

2







1 1 0

1 −1 1

−1 1 1













CL,"

C ′
L,"

CR,"






,

(

C−
γ

C+
γ

)

=
1

2

(

1 −1

1 1

)(

CR
γ

CL
γ

)

, (4.17)

for each $ = e, µ, τ . As in eq. (4.6), the SM contributions are not encoded into HGauge, and have to

be added separately.

The HGauge basis represents a class of models where the four-fermion effective operators arise

entirely from some high-scale SU(2)L ⊗ U(1)Y invariant tree-level interactions. It is characterized

by the correlations it imposes among the phenomenologically non interfering operators in HPheno. A

well-known example of model within this class is the MSSM with R-parity violating couplings [92–95],

but more generic leptoquark models are also of this form [96]. Note that in these two cases, the QR,L
γ

operators nevertheless arise only at the loop level since both the photon and the Higgs (see eq. (4.10))

have flavor-diagonal couplings at tree-level.

The HGauge basis completely decouples the three leptonic flavors. This is adequate since generic

leptoquark couplings do not respect leptonic universality. Actually, one would expect that lepton-

flavor violating (LFV) operators should arise, inducing in particular K → (π)eµ which corresponds

to an s + µ → d + e transition. Those modes are very constrained experimentally, with bounds often

lower that for lepton-flavor conserving (LFC) modes. So, if LFV and LFC couplings have similar

sizes, there can be no large effects in the LFC modes. However, to relate the LFC and LFV couplings
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Figure 9. The sensitivity of the KL → π0"+"− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small
Im C+

γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental
bounds on KL → π0"+"−. The contours stand for 90% confidence regions given the current theoretical errors
in eq. (3.47). Their apparent thinning as | Im C+

γ | increases is purely optical, except just below 10−2 where the
Q+

γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference
is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:

HPheno = −
GF α√

2

∑

!=e,µ,τ

(Cν,! Qν,! + CV,! QV,! + CA,! QA,!) + C±
γ Q±

γ + h.c. , (4.6)

QV,! = s̄γµd ⊗ "̄γµ" , QA,! = s̄γµd ⊗ "̄γµγ5" , Qν,! = s̄γµd ⊗ ν̄!γµ(1 − γ5)ν! ,

Q±
γ =

Qde

16π2
(s̄LσµνdR ± s̄RσµνdL)Fµν .
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both QL,R
γ contribute to all the decays in table 1, since C−

γ = +(−)C+
γ when CR(L)

γ is turned on.

Thus, we give in eq. (4.18) the bounds on ImC+
γ , which directly translates as maximal values for all

the direct CP-asymmetries (4.1), (4.3). Since leptonic universality holds for Q±
γ , the tightest bound

from KL → π0e+e− must be satisfied, i.e.

− 0.03 <
Im C+

γ

GF mK
< 0.04 . (4.19)

This represents only a slight extension of the range (4.4), obtained in the absence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in eq. (4.16), even though they could

arise from leptoquark exchanges. The reason is that they cannot alter the bounds (4.18) if we write

them in SU(2)L ⊗ U(1)Y invariant forms. The only four-fermion operators able to interfere with the

vector ones is QT," of eq. (4.9), but it must here be replaced by

QL
T," = s̄σµνd ⊗ L̄σµνE, QR

T," = s̄σµνd ⊗ ĒσµνL . (4.20)

Each of these operators has a pseudotensor piece s̄σµνd ⊗ #̄σµνγ5# which is the only current able to

produce the lepton pair in a 1+− state [44]. There is thus no entanglement, and QL
T," and QR

T," are

both directly bounded by the total KL → π0#+#− rate. Hence numerically, the bounds are similar to

those in eq. (4.18), and eq. (4.19) is not affected.

4.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic operators, while the

HPheno basis maximally decouples them. An intermediate picture emerges if the NP generates FCNC

only at the loop level. This can be due to some discrete symmetries (like R-parity) or to some gen-

eralized GIM mechanism. By construction, most NP models are of this type, for example the MSSM

(see section 4.3.3), little Higgs [100–102], left-right symmetry [62, 103], fourth generation [104, 105],

some extra dimension models [106],. . . , because the loop suppression of the FCNC naturally allows

for the NP particles to be lighter, hopefully within the range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the SM. Indeed,

the NP should induce the quark flavor transition s → d, but the lepton pair is flavor-diagonal and

could still be produced by SM currents, i.e., γ and/or Z bosons. So, in the absence of new vector

interactions, the SM basis is adequate:

HPB = −
GF α√

2
(CZ QZ + CA QA + CB QB) + CL,R

γ QL,R
γ + h.c. , (4.21)

with (s2
W ≡ sin2 θW = 0.231)

Z penguin : QZ ≡ s2
W QL + (1 − s2

W )Q′
L + 2s2

W QR , (4.22a)

γ∗ penguin : QA ≡
s2
W

4
(QL − Q′

L + 2QR) , (4.22b)

W boxes : QB ≡ −
3

2
QL −

5

2
Q′

L . (4.22c)
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both QL,R
γ contribute to all the decays in table 1, since C−

γ = +(−)C+
γ when CR(L)

γ is turned on.

Thus, we give in eq. (4.18) the bounds on ImC+
γ , which directly translates as maximal values for all

the direct CP-asymmetries (4.1), (4.3). Since leptonic universality holds for Q±
γ , the tightest bound

from KL → π0e+e− must be satisfied, i.e.

− 0.03 <
Im C+

γ

GF mK
< 0.04 . (4.19)

This represents only a slight extension of the range (4.4), obtained in the absence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in eq. (4.16), even though they could

arise from leptoquark exchanges. The reason is that they cannot alter the bounds (4.18) if we write

them in SU(2)L ⊗ U(1)Y invariant forms. The only four-fermion operators able to interfere with the

vector ones is QT," of eq. (4.9), but it must here be replaced by

QL
T," = s̄σµνd ⊗ L̄σµνE, QR

T," = s̄σµνd ⊗ ĒσµνL . (4.20)

Each of these operators has a pseudotensor piece s̄σµνd ⊗ #̄σµνγ5# which is the only current able to

produce the lepton pair in a 1+− state [44]. There is thus no entanglement, and QL
T," and QR

T," are

both directly bounded by the total KL → π0#+#− rate. Hence numerically, the bounds are similar to

those in eq. (4.18), and eq. (4.19) is not affected.

4.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic operators, while the

HPheno basis maximally decouples them. An intermediate picture emerges if the NP generates FCNC

only at the loop level. This can be due to some discrete symmetries (like R-parity) or to some gen-

eralized GIM mechanism. By construction, most NP models are of this type, for example the MSSM

(see section 4.3.3), little Higgs [100–102], left-right symmetry [62, 103], fourth generation [104, 105],

some extra dimension models [106],. . . , because the loop suppression of the FCNC naturally allows

for the NP particles to be lighter, hopefully within the range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the SM. Indeed,

the NP should induce the quark flavor transition s → d, but the lepton pair is flavor-diagonal and

could still be produced by SM currents, i.e., γ and/or Z bosons. So, in the absence of new vector

interactions, the SM basis is adequate:

HPB = −
GF α√

2
(CZ QZ + CA QA + CB QB) + CL,R

γ QL,R
γ + h.c. , (4.21)

with (s2
W ≡ sin2 θW = 0.231)

Z penguin : QZ ≡ s2
W QL + (1 − s2

W )Q′
L + 2s2

W QR , (4.22a)

γ∗ penguin : QA ≡
s2
W

4
(QL − Q′

L + 2QR) , (4.22b)

W boxes : QB ≡ −
3

2
QL −

5

2
Q′

L . (4.22c)

– 34 –

J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

both QL,R
γ contribute to all the decays in table 1, since C−

γ = +(−)C+
γ when CR(L)

γ is turned on.

Thus, we give in eq. (4.18) the bounds on ImC+
γ , which directly translates as maximal values for all

the direct CP-asymmetries (4.1), (4.3). Since leptonic universality holds for Q±
γ , the tightest bound

from KL → π0e+e− must be satisfied, i.e.

− 0.03 <
Im C+

γ

GF mK
< 0.04 . (4.19)

This represents only a slight extension of the range (4.4), obtained in the absence of NP but in Q±
γ .

Scalar or tensor four-fermion operators are not included in eq. (4.16), even though they could

arise from leptoquark exchanges. The reason is that they cannot alter the bounds (4.18) if we write

them in SU(2)L ⊗ U(1)Y invariant forms. The only four-fermion operators able to interfere with the

vector ones is QT," of eq. (4.9), but it must here be replaced by

QL
T," = s̄σµνd ⊗ L̄σµνE, QR

T," = s̄σµνd ⊗ ĒσµνL . (4.20)

Each of these operators has a pseudotensor piece s̄σµνd ⊗ #̄σµνγ5# which is the only current able to

produce the lepton pair in a 1+− state [44]. There is thus no entanglement, and QL
T," and QR

T," are

both directly bounded by the total KL → π0#+#− rate. Hence numerically, the bounds are similar to

those in eq. (4.18), and eq. (4.19) is not affected.

4.3 Loop-level FCNC

For a given lepton flavor, the HGauge basis maximally couples the semileptonic operators, while the

HPheno basis maximally decouples them. An intermediate picture emerges if the NP generates FCNC

only at the loop level. This can be due to some discrete symmetries (like R-parity) or to some gen-

eralized GIM mechanism. By construction, most NP models are of this type, for example the MSSM

(see section 4.3.3), little Higgs [100–102], left-right symmetry [62, 103], fourth generation [104, 105],

some extra dimension models [106],. . . , because the loop suppression of the FCNC naturally allows

for the NP particles to be lighter, hopefully within the range of the LHC.

An appropriate basis to study this scenario is derived from the situation in the SM. Indeed,

the NP should induce the quark flavor transition s → d, but the lepton pair is flavor-diagonal and

could still be produced by SM currents, i.e., γ and/or Z bosons. So, in the absence of new vector

interactions, the SM basis is adequate:

HPB = −
GF α√

2
(CZ QZ + CA QA + CB QB) + CL,R

γ QL,R
γ + h.c. , (4.21)

with (s2
W ≡ sin2 θW = 0.231)

Z penguin : QZ ≡ s2
W QL + (1 − s2

W )Q′
L + 2s2

W QR , (4.22a)

γ∗ penguin : QA ≡
s2
W

4
(QL − Q′

L + 2QR) , (4.22b)

W boxes : QB ≡ −
3

2
QL −

5

2
Q′

L . (4.22c)
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Figure 9. The sensitivity of the KL → π0"+"− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small
Im C+

γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental
bounds on KL → π0"+"−. The contours stand for 90% confidence regions given the current theoretical errors
in eq. (3.47). Their apparent thinning as | Im C+

γ | increases is purely optical, except just below 10−2 where the
Q+

γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference
is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:

HPheno = −
GF α√

2

∑

!=e,µ,τ

(Cν,! Qν,! + CV,! QV,! + CA,! QA,!) + C±
γ Q±

γ + h.c. , (4.6)

QV,! = s̄γµd ⊗ "̄γµ" , QA,! = s̄γµd ⊗ "̄γµγ5" , Qν,! = s̄γµd ⊗ ν̄!γµ(1 − γ5)ν! ,

Q±
γ =

Qde

16π2
(s̄LσµνdR ± s̄RσµνdL)Fµν .
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Figure 9. The sensitivity of the KL → π0"+"− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small
Im C+

γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental
bounds on KL → π0"+"−. The contours stand for 90% confidence regions given the current theoretical errors
in eq. (3.47). Their apparent thinning as | Im C+

γ | increases is purely optical, except just below 10−2 where the
Q+

γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference
is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:

HPheno = −
GF α√

2

∑

!=e,µ,τ

(Cν,! Qν,! + CV,! QV,! + CA,! QA,!) + C±
γ Q±

γ + h.c. , (4.6)
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Figure 9. The sensitivity of the KL → π0"+"− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small
Im C+

γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental
bounds on KL → π0"+"−. The contours stand for 90% confidence regions given the current theoretical errors
in eq. (3.47). Their apparent thinning as | Im C+

γ | increases is purely optical, except just below 10−2 where the
Q+

γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference
is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:
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Figure 9. The sensitivity of the KL → π0"+"− decays to the magnetic penguin operator Q+
γ , in the ab-

sence of any other source of NP. These curves are actually parabolas, but blown out to emphasize the small
Im C+

γ /GF mK region (whose SM value is in the 10−5 range). The horizontal lines signal the experimental
bounds on KL → π0"+"−. The contours stand for 90% confidence regions given the current theoretical errors
in eq. (3.47). Their apparent thinning as | Im C+

γ | increases is purely optical, except just below 10−2 where the
Q+

γ contribution precisely cancel out with the SM one in the vector current (positive DCPV-ICPV interference
is assumed).

be to classify the models into broad classes, and within each class, to stay as model-independent as

possible. In practice, these classes are in one-to-one correspondence with the choice of basis made for

the effective semileptonic FCNC operators. Once a basis is chosen, bounds on the Wilson coefficients

of these operators are derived by turning them on one at a time. In this way, fine-tunings between

the chosen operators are explicitly ruled out. This is where the model-dependence enters [83]. On the

other hand, the magnetic operators are kept on at all times, since it is precisely their interference with

the semileptonic FCNC which we want to resolve. Note that the alternative procedure of performing

a full scan over parameter space is (usually) basis independent, but we prefer to avoid that method

as the many possible fine-tuning among the semileptonic operators would obscure those with the

magnetic ones. Further, we will see that with our method, it is possible to get additional insight

because the bounds do depend on the basis, and thus allow discriminating among the NP scenarios.

4.1 Model-independent analysis

The most model-independent operator basis is the one minimizing the interferences between the NP

contributions in physical observables [83]. It is the one in eq. (3.45), which we reproduce here for

convenience:

HPheno = −
GF α√

2

∑

!=e,µ,τ

(Cν,! Qν,! + CV,! QV,! + CA,! QA,!) + C±
γ Q±

γ + h.c. , (4.6)

QV,! = s̄γµd ⊗ "̄γµ" , QA,! = s̄γµd ⊗ "̄γµγ5" , Qν,! = s̄γµd ⊗ ν̄!γµ(1 − γ5)ν! ,

Q±
γ =

Qde

16π2
(s̄LσµνdR ± s̄RσµνdL)Fµν .

– 28 –

J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,

and are thus entirely fixed from the Lagrangian (2.7):

q̄I
LγµqJ

L = i
F 2

2
(DµU †U)JI , q̄I

RγµqJ
R = i

F 2

2
(DµUU †)JI . (2.8)

The SU(3) breaking corrections start at O(p4) and are mild thanks to the Ademollo-Gatto theo-

rem [13]. They can be precisely estimated from the charged current matrix elements, i.e. from K"3

decays. See ref. [14] for a detailed analysis.

The chiral realization of the tensor currents in Q±
γ is more involved and starts at O(p4) since two

derivatives or a field strength tensor are needed to get the correct Lorentz structure. Further, it cannot

be entirely fixed but involves specific low-energy constants. By imposing charge conjugation and parity

invariance (valid for QCD), the antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5,
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Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).
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The chiral realization of the tensor currents in Q±
γ is more involved and starts at O(p4) since two
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be entirely fixed but involves specific low-energy constants. By imposing charge conjugation and parity

invariance (valid for QCD), the antisymmetry under µ ↔ ν, and the identity iεαβµνσµν = 2σαβγ5,

– 5 –

Z γ∗

J
H
E
P
0
8
(
2
0
1
1
)
0
6
9

Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).
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The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.
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Figure 2. Description of the radiative K decays, starting with the electroweak scale interactions down to
chiral perturbation theory, with illustrative examples of mesonic processes (the photons can be real or virtual).
The green vertices arise from the currents in eqs. (2.8), (2.9), the blue disks and square from the O(p2) weak
Lagrangians eq. (2.14) and O(p4) weak counterterms eq. (2.16), respectively, and finally, the strong (black) and
QED (red) vertices from eq. (2.7).

the Fermi interaction is effectively replaced by the whole set of Q1,...,10 operators at long-distance.

So, let us construct the hadronic representations of Heff , starting with the electromagnetic operators.

2.1.1 Electromagnetic operators

The chiral realization of the Q±
γ∗ operators requires that of the vector and axial-vector quark bilinears.

At O(p2), these currents are related by the SU(3) symmetry to the conserved electromagnetic current,
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