Results of T2K

Masashi Otani (Kyoto Univ.) for T2K collaboration March 4th 2012

- 1. Introduction
- 2. The T2K Experiment
- 3. Result of $v_{\mu} \rightarrow v_{e}$ and $v_{\mu} \rightarrow v_{x}$ (T2K accumulated 2% of planned data before the earthquake in 11th March 2011)
- 4. Summary and Outlook

<u>Introduction</u>

 When a neutrino has mass, the weak eigenstate could be different from the mass eigenstate:

Weak
eigenstate
$$\begin{pmatrix} v_e \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$
Mass
eigenstate

 U_{PMNS} is a 3x3 unitary matrix described by three mixing angles θ_{23} , θ_{13} , θ_{12} and CP-phase δ

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \cdot \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \cdot \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$c_{ij} = \cos \theta_{ij}, s_{ij} = \sin \theta_{ij}$$

Introduction

• We have learned a lot about lepton mixing from measurements of neutrino oscillation.

cf. $\left| \left\langle v_{\beta} \left| v_{\alpha}(t) \right\rangle \right|^{2} = \sin^{2} 2\theta \sin^{2} (1.27 \cdot \Delta m^{2} \cdot L/E)$ [2flavor case]

- $\begin{array}{ll} \theta_{12} = 32.7 \sim 36.0^{\circ} & \\ \theta_{23} = 36.8 \sim 53.2^{\circ} & \\ \theta_{13} < 11.4^{\circ} & \delta_{CP} = ? \end{array} \begin{array}{ll} 0.79 \sim 0.84 & 0.53 \sim 0.59 & <0.20 \\ -0.57 \sim -0.19 & 0.39 \sim 0.74 & 0.59 \sim 0.80 \\ 0.19 \sim 0.57 & -0.72 \sim -0.42 & 0.59 \sim 0.80 \end{array}$
- Now we are trying to solve the following two mysteries:
 - $\begin{array}{l} \ U_{\rm PMNS} \ {\rm is \ very \ different \ to \ } U_{\rm CKM} \\ {\rm Especially, \ } \theta_{\rm _{23}} \ {\rm seems \ to \ have \ a \ symmetry \ of \ ``full \ mixing'' \ and \ } \\ \theta_{\rm _{13}} \ {\rm seems \ to \ be \ no \ mixing}. \end{array}$
 - How about $\delta_{\rm CP}$?

First step for the δ_{CP} quest is the θ_{13} search (equation below).

$$P(v_{\mu} \rightarrow v_{e}) - P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) \propto \sin \theta_{12} \cdot \sin \theta_{13} \cdot \sin \theta_{23} \cdot \sin \delta$$

Need $\neq 0$

T2K(Tokai-to-Kamioka) Experiment

- Search for θ_{13} via the $v_{\mu} \rightarrow v_{e}$ oscillation (appearance) $P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \cdot \sin^{2} \theta_{23} \cdot \sin^{2} (1.27 \cdot \Delta m_{32}^{2} \cdot L / E)$
- Precise measurement of $\theta_{23} \& \Delta m_{32}^2$ via the $v_{\mu} \rightarrow v_x$ oscillation (disappearance)

 $P(v_{\mu} \rightarrow v_{x}) \cong \sin^{2} 2\theta_{23} \cdot \sin^{2} (\overline{1.27} \cdot \Delta m_{32}^{2} \cdot L/E)$

T2K Collaboration

~500 collaborators, 59 institutes, 12 countries

T2K Setup

Three components: Neutrino beamline, Near and Far detectors.

We employ the off-axis neutrino beam
[©]E_ν peak around oscillation maximum
[©]reduce background neutrino interactions (CC1π, NC 1π)

 $E_ν$ spectrum depends $θ_{OA}$ → need precise control and monitoring of the beam (beam direction of 1mrad ⇒ 2~3% of Ev)

Beam Stability during RUN-I and RUN-II

- Muon direction (pulse by pulse) measured by muon monitor

Proton beam and muon is well controlled and stable.

Near Detectors

 Two near detectors are located ~280m downstream from the proton target.
Off-axis detector ND280

Set of detector inside UA1magnet. Provide $v_{\mu} \& v_{e}$ fluxes in this analysis.

On-axis detector INGRID

Identical 16 modules covering 10m x 10m. v event is counted with each module, v event rate and direction are monitored.

INGRID measurements arXiv:1111.3119(2011)

 INGRID took 99.6% of the data and monitored v event rate/direction Daily v event rate

Neutrino beam direction is stable within our requirement (1mrad)

Estimation/Measurement of Neutrino Flux

Phys. Rev. C84:034604 (2011)

Far Detector Super-K

- Water Cherenkov detector in Kamioka-mine(295km away from J-PARC)
- Record all the hit PMTs within 500 usec from the beam arrival time
- e/μ can be separated by Cherenkov ring pattern and opening angle

μ-like ring

Outer Detector(OD) - 50kton, 1185 PMTs Inner Detector(ID) - 11129 PMTs - Fiducial Volume(FV) - 2m from ID wall - 22.5kton

e-like ring

T2K far detector event selection

20

• Signal : Charged Current Quasi Elastic (CCQE) interaction

 One of the backgrounds: Neutral Current (NC) π⁰ production

Find 2nd shower-ring under 2ring assumption, and calculate invariant mass

Invariant mass (atm. v)

2 0 2 4 6 8 1 PID likelihood sub-GeV 1ring (FC)

Miss-PID probability ~ 1%

Oscillation Analysis Method

Flux prediction

- Proton beam measurement
- Hadron production (NA61 and other external data)

- Inclusive CC v_u measurement and cross-check of v_{ρ} flux by ND280
- Event rate monitoring by ightarrowINGRID

Neutrino interactions

- Interaction models
- External cross-section data

Far detector measurements

- Select v_{μ} and v_{e} CCQE candidates
- Compute N_{MC}^{SK} w/o oscillation ullet
- Adjust normalization with ND280:

 $N_{exp}^{SK} = (R_{u}^{ND,data}/R_{u}^{ND,MC}) \times N_{MC}^{SK}$

Compare with N_{obs}^{SK} to evaluate \bullet oscillation parameters

> v_{e} analysis \rightarrow single bin v_u analysis \rightarrow combining number of events & shape information 13

Systematic Errors in Oscillation Analysis

for expected # of BG of v_e event(sin²2 θ_{13} =0)

for expected # of v_{μ} events (sin²2 θ_{23} =1, Δm_{32}^2 =2.4x10⁻³eV²)

Error source	Error[%]		Error[%]	
v Beam	+8.5	-8.5	+4.8	-4.8
v cross-section	+9.7	-9.7	+4.9	-4.5
Final state interaction*	+10.1	-10.1	+5.9	-5.9
Super-K	+14.7	-14.7	+10.3	-10.3
ND280 measurement	+6.2	-5.9	+6.1	-5.9
Total	+22.8	-22.7	+15.0	-14.8

*Interaction of pion in nucleus.

Event Selection Result

accumulated data is 2% of aimed statistics

								D	ata		MC		
Fully contained FV at beam timing						8	88		74.1				
	Single	e-ring						4	41		38.7		
v_{e} selection													
	Data	BG expectation		$v_{u} \rightarrow v_{e}$				MC w/ 2-flavor oscill					
	Dala	Total	$v_{\mu}CC$	ν_{e} CC	NC	expect.			Data	Total	$v_{\mu}CCQE$	ν _μ CC	v _e C0
e-like	8	6.6	1.0	1.8	3.7	5.2	μ-li	ike	33	32.0	17.6	12.4	< 0.1
E _{vis} > 100 MeV	7	5.7	0.7	1.8	3.2	5.1	P., > 200	0 MeV/c	33	31.8	17.5	12.4	< 0.2
No decay-e	6	4.4	0.1	1.5	2.8	4.6	N(decay	/-e) ≤ 1	31	28.4	17.3	9.2	< 0.2
M _{inv} < 105 MeV/c ²	6	1.9	0.04	1.1	0.8	4.2							
$E_v^{rec} < 1250$ MeV	6	1.3	0.03	0.7	0.6	4.1	Effici	ency	-	20 %	72 %	21%	0.4 %
Efficiency	+	1%	< 0.1 %	23 %	1%	66 %		ν	event	can	didat	es =	= 31

 v_e event candidates = 6 Expectation $(\sin^2 2\theta_{13} = 0, \delta = 0) = 1.5 \pm 0.3$ Expectation $(\sin^2 2\theta_{13} = 0.1, \delta = 0) = 5.5 \pm 1.0$ v_{μ} event candidates = 31 Expectation (sin² 2 θ_{23} = 1, $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$) = 28.4^{+4.3}_{-4.2¹⁵}

on

NC

1.9

1.9

1.8

3%

 $\underline{v_{\mu}} \rightarrow \underline{v_{e}} \operatorname{Result}$

Reconstructed v_e energy

Phys. Rev. Lett. 107:041801, (2011) 68%/90% CL region

Expected 1.5 \pm 0.3 BG and observed 6 event. θ_{13} = 0 probability is only 0.7%.

 $0.03 < \sin^2 2\theta_{13} < 0.28$ (normal) $0.04 < \sin^2 2\theta_{13} < 0.34$ (inverted)

We observed the indication of $\theta_{13} \neq 0$

Reconstructed v_{μ} energy

90% CL region

Clear oscillation pattern is observed with off-axis beam

90% CL boundary includes (1.0, 3.1x10⁻³eV²), (0.84, 2.65x 10⁻³eV²) and (1.0, 2.2x10⁻³eV²)

First observation of v_{μ} disappearance using off-axis beam.

Summary & Outlook

- We accumulated 2% of the T2K planned data before the earthquake in 11th March 2011
- We obtained the indication of $\theta_{13} \neq 0$ via the $v_{\mu} \rightarrow v_{e}$ appearance.
- We measured $sin^2 2\theta_{23}$ and Δm^2 precisely via the $v_{\mu} \rightarrow v_x$ disappearance.
- We recovered from the earthquake and the T2K beam was back in Dec. 2011.
- The T2K experiment resumes from March. The expected beam power is 100 ~ 150 kW.
- Our final goal is to search for $sin^2 2\theta_{13}$ down to 0.006 and measure $sin^2 2\theta_{23}$ with a precision of 0.01

First beam v event since earthquake @Super-K (Jan. 2012)

<u>Backup</u>

Expected sensitivities for θ_{13}

~1e21 ~2e21 ~3e21pot

<u>Event timing @ far detector (Super-K)</u>

<u>Vertex Distribution of the v_e candidates</u>

- There is no evidence of the background contamination from outer space such as OD
- The probability to observe the vertex distribution is low, but not unreasonable.

For further investigation, we need more data.

Probability to observe the vertex distribution

Probability From Toy-MC					
Distribution	7 FC Events	6 FCFV Events			
Dwall	22.6%	3.7%			
Towall	7.2%	1.9%			
Fromwall	22.8%	5.8%			
R^2	10.9%	3.1%			
Z	38.8%	68.3%			
ϕ	28.5%	11.0%			

Probability From Toy-MC					
Distribution	7 FC Events	6 FCFV Events			
Towall to Beam	5.1%	1.1%			
Fromwall to Beam	1.4%	0.14%			
x	32.0%	51.4%			
y y	42.5%	72.7%			
2	5.2%	0.65%			