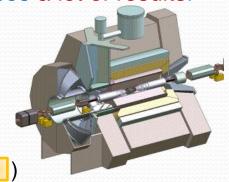

A SELECTION OF RECENT RESULTS FROM

Vincent Poireau

CNRS-IN2P3, LAPP Annecy, Université de Savoie, France

On behalf of the BaBar collaboration



Recent results from BABAR

- The BABAR experiment switched off in 2008, but still produces a lot of results!
 - 471 papers in total
 - ~30 papers in 2011
- BABAR still competitive in many analyses with respect to LHCb

Many measurements can be performed only at B-factories (

Results presented today:

Exclusive measurements of $b \rightarrow s\gamma$ transition rate and photon energy spectrum

Angular distributions in $B \rightarrow K^*l^+l^-$

Search for lepton-number violating processes in $B^+ \rightarrow h^- l^+ l^+$

Search for $B^{\pm} \rightarrow h^{\pm} \tau I$

Search for *CP* violation in $\tau^- \to \pi^- K^0_S (\geq 0\pi^0) v_{\tau}$

Exclusive measurements of b o sy transition rate and photon energy spectrum

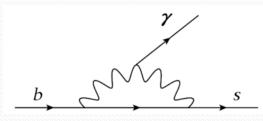
Preliminary result

> sy: introduction

471.10⁶ B\bar{B}

- FCNC (flavor changing neutral current) forbidden at tree level in SM
 - Occurs at **loop level**, precision test of the SM

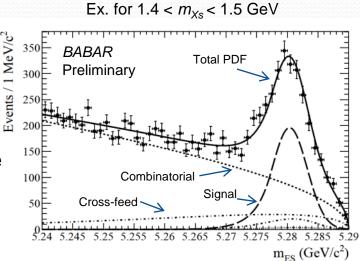
SM: BF(
$$\bar{B} \rightarrow X_{\rm S} \gamma$$
)= (3.15 ± 0.23)×10⁻⁴ M. Misiak and M. Steinhauser, Nucl. Phys. B**764**, 62 (2007) (E _{γ} > 1.6 GeV)


- **New physics** may affect the transition rate
- World average experimental value

Exp: BF(
$$\bar{B} \rightarrow X_s \gamma$$
)= (3.55 ± 0.24 ± 0.09)×10⁻⁴ (E _{γ} > 1.6 GeV)

- Gives insight into the **momentum distribution** function of the b quark inside the B meson
- Constrains the uncertainty on V_{ub}
- Using « sum of exclusive » approach
 - 38 different fully reconstructed X_s final states
- Photon energy
 - **Range**: 1.9 < E_{γ} < 2.61 GeV $E_{\gamma}^{B} = \frac{m_{B}^{2} m_{X_{s}}^{2}}{2m_{B}}$

$$E_{\gamma}^{B} = \frac{m_{B}^{2} - m_{X_{s}}^{2}}{2m_{B}}$$


 X_s final states X_s = final state of the s quark hadronic system

	********	~~~ ! ~~~~~~~~~~	
Mode Num.	Final State	Mode Num.	Final State
1	$K_S\pi^+$	20	$K_S\pi^+\pi^-\pi^+\pi^-$
2	$K^+\pi^0$	21	$K^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}$
3	$K^+\pi^-$	22	$K_S \pi^+ \pi^- \pi^0 \pi^0$
4	$K_S\pi^0$	23	$K^+\eta$
5	$K^{+}\pi^{+}\pi^{-}$	24	$K_S\eta$
6	$K_S \pi^+ \pi^0$	25	$K_S \eta \pi^+$
7	$K^{+}\pi^{0}\pi^{0}$	26	$K^+\eta\pi^0$
8	$K_S \pi^+ \pi^-$	27	$K^+\eta\pi^-$
9	$K^{+}\pi^{-}\pi^{0}$	28	$K_S \eta \pi^0$
10	$K_S \pi^0 \pi^0$	29	$K^+\eta\pi^+\pi^-$
11	$K_S\pi^+\pi^-\pi^+$	30	$K_S \eta \pi^+ \pi^0$
12	$K^{+}\pi^{+}\pi^{-}\pi^{0}$	31	$K_S \eta \pi^+ \pi^-$
13	$K_S \pi^+ \pi^0 \pi^0$	32	$K^{+}\eta\pi^{-}\pi^{0}$
14	$K^{+}\pi^{+}\pi^{-}\pi^{-}$	33	$K^{+}K^{-}K^{+}$
15	$K_S \pi^0 \pi^+ \pi^-$	34	$K^+K^-K_S$
16	$K^{+}\pi^{-}\pi^{0}\pi^{0}$	35	$K^+K^-K_S\pi^+$
17	$K^{+}\pi^{+}\pi^{-}\pi^{+}\pi^{-}$	36	$K^{+}K^{-}K^{+}\pi^{0}$
18	$K_S \pi^+ \pi^- \pi^+ \pi^0$	37	$K^{+}K^{-}K^{+}\pi^{-}$
19	$K^+\pi^+\pi^-\pi^0\pi^0$	38	$K^+K^-K_S\pi^0$
		·	

$b \rightarrow s \chi$: analysis

- Two types of signal MC events are generated
 - **K***(**892**) region (m_{Xs} < 1.1 GeV)
 - **Inclusive** region (1.1 $< m_{\times s} <$ 2.8 GeV)
- Flat photon spectrum in the inclusive region at the generation level
 - Allows us to reweight for whichever model we like
- Using 3 classifiers (random forest classifiers) to reject the background, optimized in 4 m_{xs} regions
 - Choice of best B candidate
 - **Veto** to avoid selecting a photon coming from a π^0
 - Continuum background
- Signal yield extracted from m_{ES} fit in each m_{Xs} bin
- Fragmentation study and models
 - Grouping the final states by topology and correct signal + cross-feed so that they agree with data
 - Included in the systematics using several models for quark hadronization

$b \rightarrow s \gamma$: results

- Result on partial BF in each m_{χ_s} bin:
- Fit of the spectrum and extraction of the moments (HQET parameters)
 - Using « kinetic » and« shape function » models

	Kinetic model	Shape function
$m_b \; (\text{GeV}/c^2)$	$4.568^{+0.038}_{-0.036}$	$4.579_{-0.029}^{+0.032}$
$\mu_{\pi}^2 \; (\text{GeV}^2)$	0.450 ± 0.054	$0.257^{+0.034}_{-0.039}$

	Kinetic model	Shape function	
$m_b \; (\text{GeV}/c^2)$	4.591 ± 0.031	$4.620^{+0.039}_{-0.032}$	HFAG
$\mu_{\pi}^2 \; (\text{GeV}^2)$	0.454 ± 0.038	$0.288^{+0.054}_{-0.074}$,.0

- Result on total BF
 - Sum the **partial BF** in each m_{X_S} bin

BF(
$$\bar{B} \rightarrow X_s \gamma$$
)= (3.29 ± 0.19 ± 0.48)×10⁻⁴ (E _{γ} > 1.9 GeV)

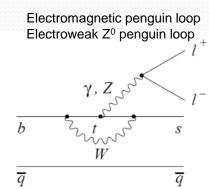
Spectrum fit (kinetic model) 30 25 20 15 0 -5 Data -10 Fit using the kinetic model 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 m_{Xs} (GeV/c²)

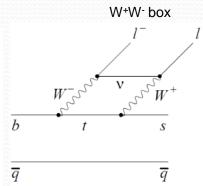
Kinetic model: Nucl. Phys. B**710**, 371 (2005) Shape function: Phys. Rev. D**72**, 073006 (2005)

Angular distributions in $B \rightarrow K^*/f$

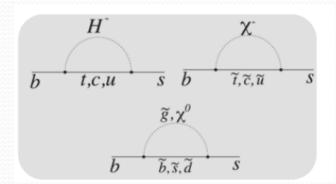
Preliminary result

For BF and rate asymmetry, see Liang Sun's talk

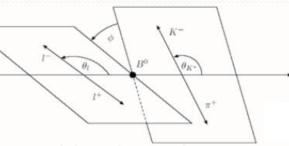

$B \rightarrow K^*/+/-:$ introduction


465.10⁶ B\bar{B}

- B → K*/+/r in the SM via penguin and box diagrams
 - Effective Hamiltonian given by

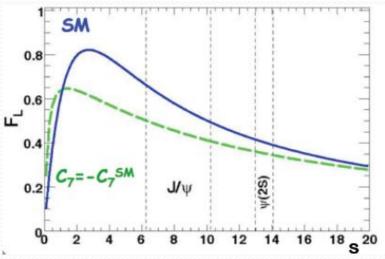

$$\mathcal{H} = \sum_{i=1,10} C_i \mathcal{O}_i$$

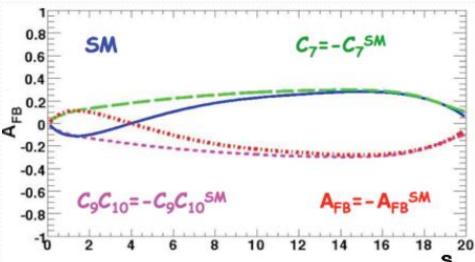
- O_i local operators
- C_i Wilson coefficients
 - C₇^{eff} from photon penguin
 - C₉^{eff}/C₁₀^{eff} from vector/axial-vector parts of the Z penguin and W box


- $B \rightarrow K^* I^+ I^-$ affected by new physics
 - Could lead to sizeable deviations from SM
- In the following, $s = m^2(l+l^2)$

$B \rightarrow K^*/+/$: observables

- Angular distribution
 - θ_{K} : angle between the K and the B in the K^{*} frame
 - θ_{l} : angle between $l^{+}(l^{-})$ and the $B(\bar{B})$ in the $l^{+}l^{-}$ frame




 Fraction of the longitudinal polarization of the K*: F_I

$$\frac{1}{\Gamma(s)} \frac{d\Gamma}{d\cos\theta_K} = \frac{3}{2} F_L(s) \cos^2\theta_K + \frac{3}{4} (1 - F_L(s))(1 - \cos^2\theta_K)$$

 Lepton forward-backward asymetry: A_{FB}

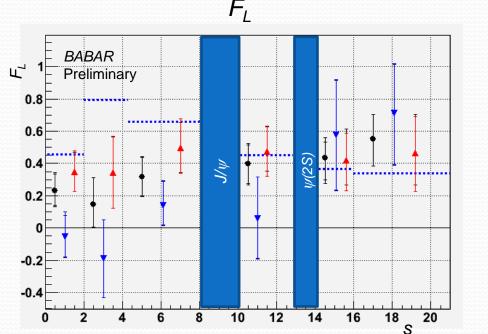
$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4} F_L (1 - \cos^2\theta_{\ell}) + \frac{3}{8} (1 - F_L)(1 + \cos^2\theta_{\ell}) + \mathcal{A}_{FB}\cos\theta_{\ell}$$

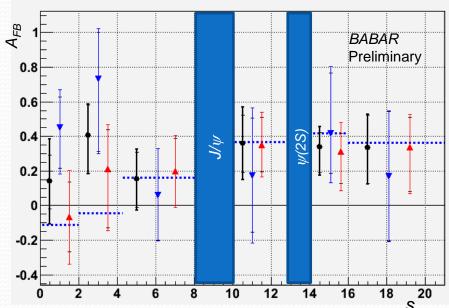
Phys. Rev. D61, 074024 (2000), Phys. Rev. D63, 014015 (2001), Phys. Rev. D66, 034002 (2002),

Phys. Rev. D61, 114028 (2002), Phys. Rev. D71, 094009 (2005)

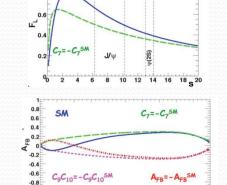
$B \rightarrow K^*/+/-:$ analysis

- 7 bins in the s variable
 - Same binning as CDF, Belle, and LHCb to ease the comparison and average
 - Two **vetoed** regions dominated by J/ψ and $\psi(2S)$ (control samples)
- 5 final states
 - $B^+ \to K^{*+} I^+ I^-$, $K^{*+} \to K^+ \pi^0$, $K^0_s \pi^+$ $I = e, \mu$
 - $B^0 \to K^{*0}I^+I^-$, $K^{*0} \to K^+\pi^-$
 - $B^+ \to K^{*+} \mu^+ \mu^-$, $K^{*+} \to K^+ \pi^0$ **not used** (no improvement + shows bias in control sample)
- Bagged decision trees (BDT) to suppress continuum and $B\bar{B}$ background
 - Based on ΔE , event shape and vertexing variables
 - Likelihood ratio R constructed from $B\bar{B}$ BDT
- Angular observables extracted from simultaneous fits over the combinations of final states
- Strategy in each bin in s
 - For each of the 5 modes, fit of m_{ES} , $M(K\pi)$ and R, fix parameters for next stage
 - Fit $\cos \theta_K$ to extract F_L
 - Fix F_L, fit cos θ_I to extract A_{FB}




$B \rightarrow K^*/+/-$: results

▲ K*0|+1

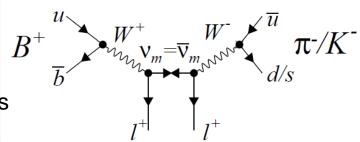

• K*/+/-

Theoretical uncertainties of 5-10% in low s region and 10-15% in high s region

- Our values have similar precision compared to LHCb
 - Significantly more precise than either Belle or CDF
- K*0|+| values compares well with other experiments
 - Other experiments predominantly K*0I+I-
- Some tension in low s region for K*+I+I

Belle: Phys. Rev. Lett. 103, 171801 (2009); LHCb: arXiv:1112.3515 (2011); CDF: Phys. Rev. Lett. 108, 081807 (2012)

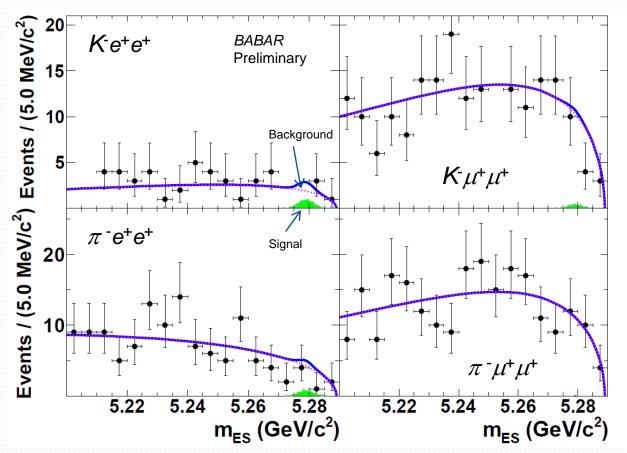
Search for lepton-number violating processes in $B^+ \rightarrow h^-l^+l^+$


Submitted to Phys. Rev. D arXiv:1202.3650

$B^+ \rightarrow h^- l^+ l^+$: introduction

471.10⁶ B\bar{B}

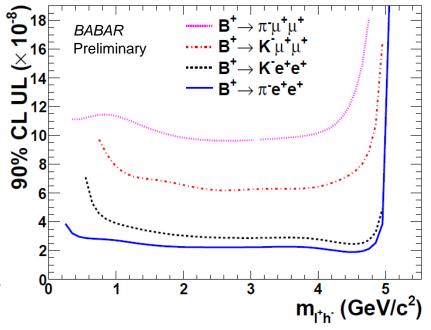
- In SM, lepton number L conserved in low-energy collisions and decays
- Neutrino oscillation ⇒ neutrinos have mass
 - If neutrinos are of Majorana type,
 L violation becomes possible
 - Processes involving meson decays alternative to neutrinoless double beta decays
 Eur. Phys. Jour. C71, 1715 (2011)



- Beyond the SM
 - L can be violated in left-right symmetric gauge theories, SO(10) SUSY, R-parity violating models, extra-dimensions
- 4 final states
 - $h = K, \pi I = e, \mu$
- Same selection as K*I+I analysis

$B^+ \rightarrow h^- l^+ l^+$: results

- Unbinned maximum likelihood fits of m_{ES} and R for each of the 4 modes
 - Use of $B^+ \rightarrow J/\psi h^+$ data for m_{ES} PDF parameters
- No signal is observed


$B^+ \rightarrow h^- l^+ l^+$: upper limits

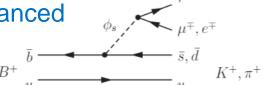
• Upper limits (90% CL)

- BF($B^+ \to \pi^- e^+ e^+$) < 2.3 x10⁻⁸
- BF($B^+ \to K^- e^+ e^+$) < 3.0 x10⁻⁸
- BF($B^+ \to \pi^- \mu^+ \mu^+$) < 10.7 x10⁻⁸
- BF($B^+ \to K^- \mu^+ \mu^+$) < 6.7 x10⁻⁸

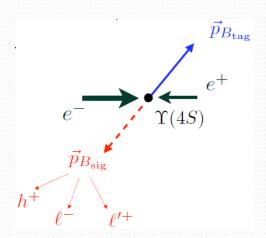
Other experiments

- **CLEO**: BF($B^+ \to h^- l^+ l^+$) < (1.0 8.3) x 10⁻⁶ $h = \pi$, $K^{(*)}$, ρ
- **Belle**: BF($B^+ \rightarrow D^-l^+l^+$) < (1.1 2.6) x 10⁻⁶
- **LHCb**: BF($B^+ \to X^- \mu^+ \mu^+$) < 1.3 x 10⁻⁸ 2.6 x 10⁻⁶ $X^- = D^{-(*)}, D^-_s, \pi^-, D^0 \pi^-$ (with 41 pb⁻¹)
- Electron results 40-70 times more stringent than before

Search for $B^{\pm} \rightarrow h^{\pm} \tau I$

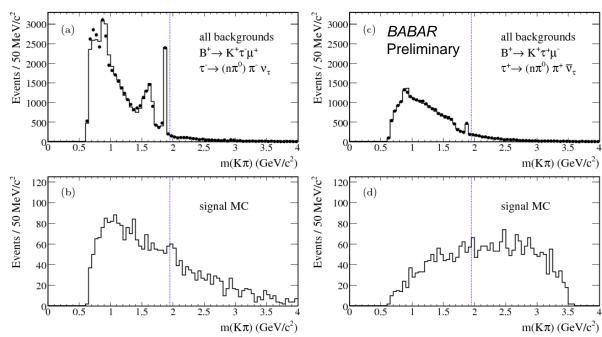

Preliminary result

$B^{\pm} \rightarrow h^{\pm} \tau / : introduction$

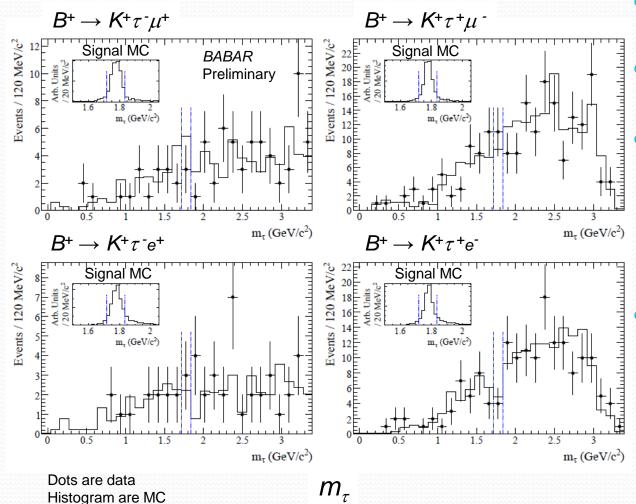

472.106 BB

- FCNC and charged lepton flavor violation (LFV) forbidden in SM at tree level
- In many extensions of the SM, FCNC and/or LFV enhanced
 - Especially for second and third generations
 Phys. Rev. D44, 1461 (1991)

- 8 final states
 - $h = K, \pi I = e, \mu$
 - $B^+ \to K^+ \tau e$, $B^+ \to \pi^+ \tau \mu$, $B^+ \to \pi^+ \tau e$ never done before
- Indirect reconstruction of the tau
 - Fully reconstructed hadronic B on one side (tag B)
 - $B \rightarrow D^{(*)0}X^{-}$, X^{-} composed of π^{\pm} , K^{\pm} , K^{0}_{S} , π^{0}
 - This determines the three-momentum of the other B (signal B) and thus the tau


 - $E_{\tau} = E_{beam} p_h p_l$
- Single-prong tau decays
 - $\tau \rightarrow e \nu \bar{\nu}$
 - $\tau \rightarrow \mu \nu \bar{\nu}$
 - $\tau \rightarrow \pi^+ (\geq 0\pi^0) v$

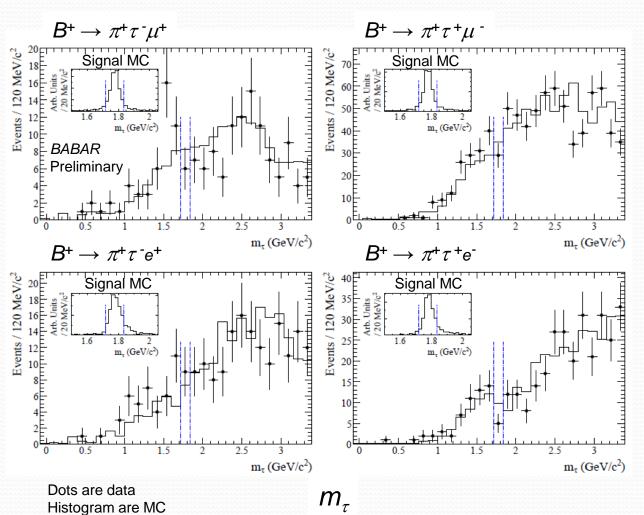
$B^{\pm} \rightarrow h^{\pm} \tau I$: analysis


- Selection based on PID and event shape
- Veto on m_{\parallel} when consistent with J/ψ and $\psi(2S)$
- Background coming from
 - Semileptonic B decays when Q(B_{sig})=Q(I)
 - Semileptonic D decays when Q(B_{siq})=-Q(I)
 - Remove these background with "m(Kπ)" > 1.95 GeV

Cut on likelihood ratio R to suppress the continuum

$B^{\pm} \rightarrow h^{\pm} \tau / :$ Kaon modes

- Signal region
 - $m_{\tau} \pm 60 \text{ MeV}$
- No evidence for signal
- Combined limits


90% CL Upper Limit
(10^{-5})
4.8
3.0

- Model-independent bounds on the energy scale of new physics in flavor-changing operators
 - $\Lambda_{\bar{b}s} > 15 \text{ TeV} (90\% \text{ CL})$
 - (was 2.6 TeV)

Phys. Rev. D66, 053002 (2002)

$B^{\pm} \rightarrow h^{\pm} \tau I$: Pion modes

- No evidence for signal
- Combined limits

90% CL Upper Limit
(10^{-5})
7.2
7.5

- Model-independent bounds on the energy scale of new physics in flavor-changing operators
 - $\Lambda_{\bar{b}d} > 11 \text{ TeV} (90\% \text{ CL})$
 - (was 2.2 TeV)

Phys. Rev. D66, 053002 (2002)

Search for CP violation in $\tau^* \to \pi^* K^0_s (\geq 0\pi^0) \nu_{\tau}$

Phys. Rev. D85, 031102 (2012)

$\tau^- \rightarrow \pi^- K^0_s (\geq Q\pi^0) \gamma_\tau$: introduction

437.106 $\tau \bar{\tau}$

- CP violation only observed in hadronic decays (K, B, D systems)
- Decay rate asymmetry in tau decays

$$A_{Q} = \frac{\Gamma\left(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}\right) - \Gamma\left(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau}\right)}{\Gamma\left(\tau^{+} \to \pi^{+} K_{S}^{0} \overline{\nu}_{\tau}\right) + \Gamma\left(\tau^{-} \to \pi^{-} K_{S}^{0} \nu_{\tau}\right)}$$

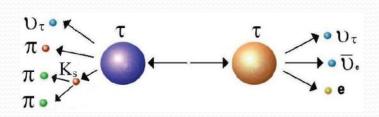
• Bigi and Sanda predict $A_Q = (0.33 \pm 0.01)\%$

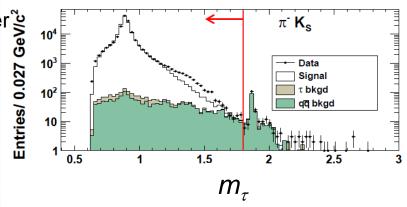
Phys. Lett. B625, 47 (2005)

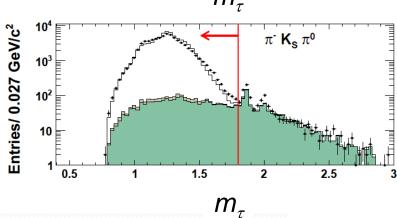
- Due to CP violation in K⁰ in SM
- A_O independent of the number of π^O
- Grossman and Nir (2011)

arXiv:1110.3790 (2011)

- Must take into account **interferences** between the amplitudes of intermediate K^0_s and K^0_L (as important as the pure K^0_s amplitude)
- A_Q depends on the reconstruction efficiency as a function of $K^0_S \to \pi^+ \pi^-$ decay time
- Deviation from SM can be a sign of new physics

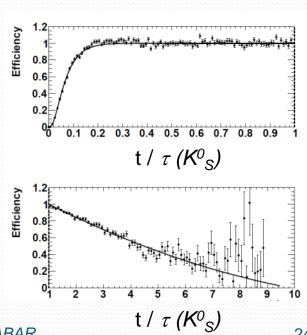

$\rightarrow \pi^{-}K^{0}_{S} (\geq 0\pi^{0})\gamma_{\tau}$: analysis


- Two hemispheres: signal and tag side
 - signal side: 1 pion, 1 K⁰_S
 - tag side: $\tau^- \rightarrow l^+ \overline{\nu}_l \nu_{\tau} \qquad l = e, \mu$



- Invariant mass of **reconstructed tau** smaller than **1.8 GeV Likelihood ratio** based on energy, calorimeter clusters, thrust and momentum $(q\bar{q} \text{ bkg})$ and on K^0_S reconstruction parameters $(K^0_S \text{ bkg})$ parameters (K⁰_S bkg)
- 199 064 candidates for the e-tag 140 602 for the μ -tag, with:

Source	Fractions $(\%)$		
	e-tag	μ -tag	
$\tau^- \to \pi^- K_S^0 (\geq 0\pi^0) \nu_\tau$	78.7 ± 4.0	78.4 ± 4.0	
$\tau^- \to K^- K_S^0 (\geq 0\pi^0) \nu_{\tau}$	4.2 ± 0.3	4.1 ± 0.3	
$\tau^- \to \pi^- K^0 \overline{K}{}^0 \nu_\tau$	15.7 ± 3.7	15.9 ± 3.7	
Other background	1.40 ± 0.06	1.55 ± 0.07	



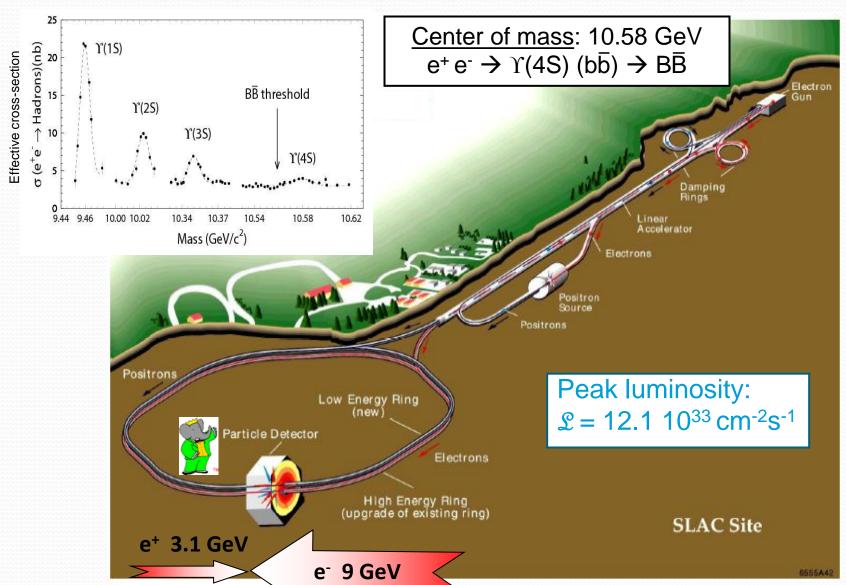
$\tau^- \rightarrow \pi^- K^0_{\mathcal{S}} (\geq 0\pi^0) \gamma_{\tau}$: results

- Correct the raw asymmetry
 - $\tau^- \to K^- K^0_S (\geq 0\pi^0) \nu_{\tau}$: exp. asymmetry **opposite** of signal
 - $\tau^- \rightarrow \pi^- K^0 \overline{K^0} \nu_{\tau}$: exp. asymmetry = **0**
- Ko et al (2011)
 Phys. Rev. D84, 111501 (2011)
 - need to take into account a **correction** on A_Q due to the different **nuclear-interaction cross-section** of the K^0 and \bar{K}^0 mesons with the material in the detector
 - correction is -(0.07 ± 0.01)%
- Result (combined)

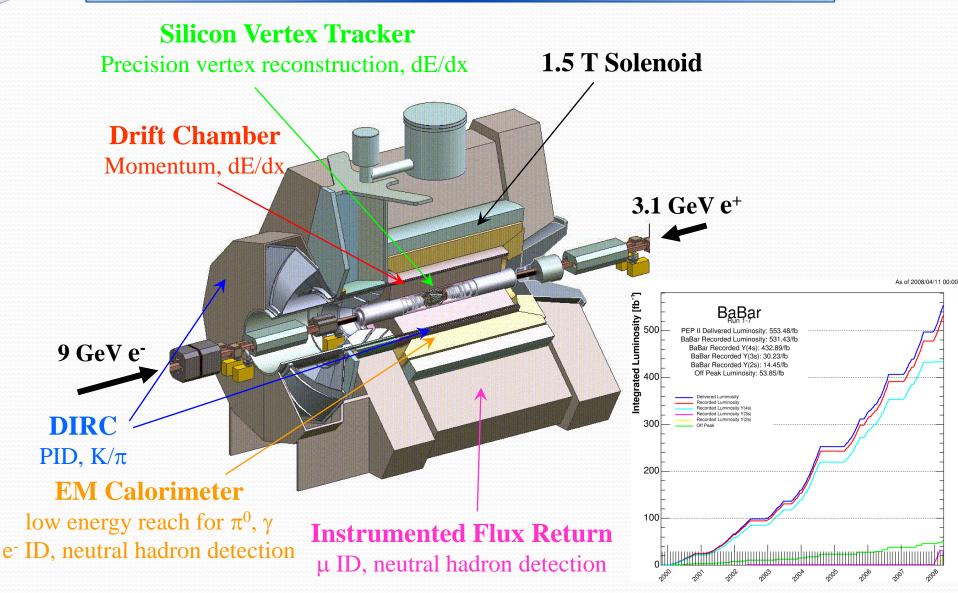
$$A_Q = -(0.36 \pm 0.23 \pm 0.11)\%$$

- Correction for the $K^0_S \to \pi^+ \pi^-$ decay time dependence (Grossman and Nir) arXiv:1110.3790 (2011)
 - Multiplicative factor of 1.08 ± 0.01
 - $A_O^{SM} = (0.36 \pm 0.01)\%$
- 2.8σ away from the SM

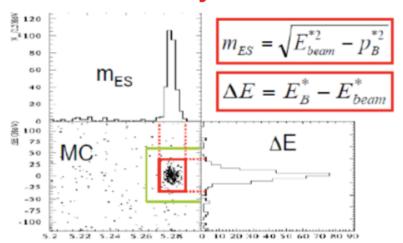
Summary


- 5 new results from BABAR have been presented
- In general, good agreement with the SM, except
 - B → K^{*}I⁺I⁻: some tension at low m²(I⁺I⁻) for F_L and A_{FB}
 - $\tau^- \to \pi^- K^0_S (\geq 0\pi^0) v_\tau$: *CP* violation parameter **2.8** σ away from SM
- The actual statistics is not sufficient to tell whether or not these could be indication for new physics

ADDITIONAL SLIDES



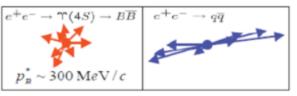
PEP-II AND BABAR

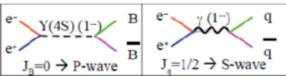

THE BABAR EXPERIMENT


Common analysis techniques

Kinematics of fully reconstructed B

K/π separation


Very good particle ID between 1.5 and 4 GeV/c


Background discrimination

Suppression by multi-variable classifiers based on event-shape variables: Fisher discriminant, Boosted Decision Trees (BTD)...

Topology:

Angular distribution:

- Strongly discriminate continuum events (e⁺e⁻→qq̄ (q = u,d,s,c)
- Background from B decays

Variables are often combined to a likelihood function, used in a maximum likelihood fit for signal/background separation and to measure parameters of interest

$b \rightarrow s \chi$

TABLE VI: Signal yields from fits to the on-peak data and corresponding χ^2/dof from the fits (the uncertainties are statistical only).

m_{X_s}	$N_y ield$	Data Fit
(GeV/c^2)	(events)	$\chi^2/{ m dof}$
0.6-0.7	5.9 ± 12.2	0.8
0.7 - 0.8	114.7 ± 24.0	0.9
0.8 - 0.9	2627.4 ± 50.2	1.0
0.9 - 1.0	2249.5 ± 53.1	0.9
1.0 - 1.1	380.4 ± 36.1	0.9
1.1 - 1.2	393.7 ± 37.1	0.8
1.2 - 1.3	1330.5 ± 47.1	0.6
1.3 - 1.4	1501.0 ± 54.7	1.0
1.4 - 1.5	1479.6 ± 58.3	1.0
1.5 - 1.6	1039.6 ± 55.7	0.9
1.6 - 1.7	929.1 ± 56.7	0.9
1.7 - 1.8	736.5 ± 48.6	1.2
1.8 - 1.9	585.8 ± 50.8	1.0
1.9 - 2.0	272.0 ± 37.4	1.0
2.0 - 2.2	684.4 ± 68.2	1.1
2.2 - 2.4	277.5 ± 64.6	1.0
2.4 - 2.6	159.7 ± 54.4	0.8
2.6-2.8	-34.4 ± 62.0	1.0 1.0 1.1 1.0 0.8 1.1

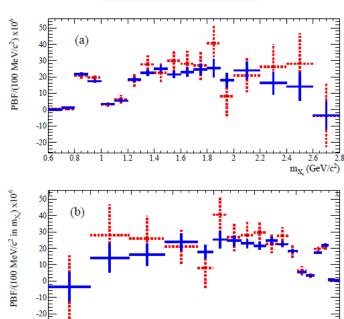


TABLE VII: The PBFs in each mass bin reflecting branching fractions per 100 MeV/ c^2 , and the total branching fraction for $b \to s \gamma$ with $E_{\gamma} > 1.9 \, {\rm GeV}$. The uncertainties quoted are statistical and systematic.

m_{X_s}	Branching Fra	ction
(GeV/c^2)	per 100 MeV	$/c^2$
	$(\times 10^{-6})$	
0.6 - 0.7	$0.1 \pm 0.1 \pm$	0.0
0.7 - 0.8	$1.0~\pm~0.2~\pm$	0.1
0.8 - 0.9	$21.8~\pm~0.4~\pm$	0.8
0.9 - 1.0	$17.4~\pm~0.4~\pm$	0.6
1.0 - 1.1	$3.4~\pm~0.3~\pm$	0.5
1.1 - 1.2	$5.5~\pm~0.5~\pm$	0.4
1.2 - 1.3	$18.4~\pm~0.7~\pm$	1.2
1.3 - 1.4	$22.5~\pm~0.8~\pm$	1.5
1.4 - 1.5	$24.9~\pm~1.0~\pm$	2.0
1.5 - 1.6	$21.5~\pm~1.2~\pm$	1.8
1.6 - 1.7	$23.0~\pm~1.4~\pm$	2.3
1.7 - 1.8	$24.6~\pm~1.6~\pm$	3.0
1.8 - 1.9	$25.4~\pm~2.2~\pm$	5.0
1.9 - 2.0	$17.9~\pm~2.5~\pm$	3.4
2.0 - 2.2	$24.0~\pm~2.4~\pm$	4.7
2.2 - 2.4	$16.2~\pm~3.8~\pm$	5.7
2.4 - 2.6	$14.1~\pm~4.8~\pm$	7.3
2.6 - 2.8	-3.5 \pm 6.4 \pm	6.1
0.6 - 2.8	$329 \pm 19 \pm$	48

FIG. 2: The PBFs binned in both (a) X_s mass and (b) the corresponding E_{γ} bins with the statistical and systematic uncertainties added in quadrature. The current results (solid lines) and former BABAR results [15] (dashed lines) are shown.

E_γ (GeV)

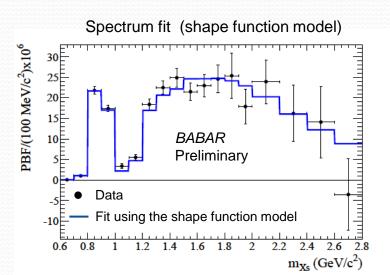


TABLE IX: The mean and variance of the photon energy spectrum, calculated at multiple photon energy cutoffs. The errors are statistical and systematic.

$E_{\gamma min}$	$\langle E \rangle$	$\langle E^2 \rangle - \langle E \rangle^2$
(GeV)		(GeV^2)
1.897	$2.346 \pm 0.018^{+0.027}_{-0.022}$	$0.0211 \pm 0.0057^{+0.0055}_{-0.0069}$
1.999	$2.338\pm0.010^{+0.020}_{-0.017}$	$0.0239\pm0.0018^{+0.0023}_{-0.0030}$
2.094	$2.365\pm0.006^{+0.016}_{-0.010}$	$0.0176\pm0.0009^{+0.0009}_{-0.0016}$
2.181	$2.391 \pm 0.003^{+0.008}_{-0.007}$	$0.0129\pm0.0003^{+0.0005}_{-0.0005}$
2.261	$2.427\pm0.002^{+0.006}_{-0.006}$	$0.0082 \pm 0.0002^{+0.0002}_{-0.0002}$

We have also measured the mean and variance of the photon spectrum. At the lowest photon energy cutoff $(E_{\gamma} > 1.897 \,\text{GeV})$, these values are

$$\langle E \rangle = 6 \pm 0.018^{+0.027}_{-0.022} \,\text{GeV}, \qquad (10)$$

$$\langle E \rangle = 6 \pm 0.018^{+0.027}_{-0.022} \,\text{GeV},$$
 (10)
 $\langle E^2 \rangle - \langle E \rangle^2 = 0.0 = 0.0057^{+0.0055}_{-0.0069} \,\text{GeV}^2$ (11)

(compared with the previous BABAR analysis results of $\langle E \rangle = 2.321 \pm 0.038^{+0.017}_{-0.038} \text{ GeV}$, and $\langle E^2 \rangle - \langle E \rangle^2 =$ $0.0253\pm0.0101^{+0.0041}_{-0.0028}\,\mathrm{GeV}^2$ [15]).

Table 8: Data fit combined mode signal yields. Using the most recent HFAG results, the expected yield from MC is given parenthetically after each fit yield.

	Modes	0	1	2	3	4	5	6
$B \rightarrow K^* \ell^+ \ell^-$	7,8,10,11,12	40.7 ± 8.4 (43.0)	31.9 ± 7.1 (25.0)	11.8 ± 5.5 (19.0)	21.5 ± 8.6 (36.7)	31.8 ± 8.2 (31.8)	19.5 ± 5.5 (16.5)	15.3 ± 5.6 (13.5)
$B^0 \rightarrow K^{*0} \ell^+ \ell^-$	8,12	23.0 ± 6.6 (27.8)	$23.1 \pm 5.8 (15.8)$	8.0 ± 3.8 (12.2)	$13.9 \pm 6.4 (24.1)$	22.9 ± 6.6 (21.1)	$13.1 \pm 4.6 (11.2)$	9.1 ± 4.7 (9.1)
$B^+ \rightarrow K^{*+} \ell^+ \ell^-$	7,10,11	$17.7 \pm 5.2 (15.2)$	8.9 ± 4.1 (9.2)	3.8 ± 3.9 (6.8)	$7.7 \pm 5.7 (12.7)$	8.9 ± 4.8 (10.7)	6.4 ± 3.0 (5.3)	6.2 ± 3.0 (4.4)

We consider several sources of systematic uncertainty for the F_L and A_{FB} fits in each of s bin:

- the fit uncertainty on the signal yield from the $m_{\rm ES}$, $M(K\pi)$ fit;
- the fit uncertainity on F_L , which is propagated into the \mathcal{A}_{FB} fit.
- the random combinatorial background fit shape and normalization;
- · crossfeed modeling;
- the signal gaussian m_{ES} and resonant $M(K\pi)$ shapes;
- signal angular efficiencies as a function of generator-level variations in the Wilson coefficients;
- fit bias;
- characterization of peaking backgrounds from muon mis-identification and charmonium leakage;
- variations in event selection.

Table 11: Preliminary F_L results with systematics.

$s(\text{GeV}^2/c^4)$	$B o K^* \ell^+ \ell^-$	$B^0 o K^{*0} \ell^+ \ell^-$	$B^+ o K^{*+} \ell^+ \ell^-$
0.1 - 2.00 $2.00 - 4.30$ $4.30 - 8.68$ $10.09 - 12.86$ $14.18 - 16.00$ > 16.00	$\begin{array}{c} 0.23^{+0.10}_{-0.09} \pm 0.04 \\ 0.15^{+0.17}_{-0.14} \pm 0.04 \\ 0.32^{+0.12}_{-0.12} \pm 0.06 \\ 0.40^{+0.12}_{-0.12} \pm 0.06 \\ 0.43^{+0.10}_{-0.13} \pm 0.09 \\ 0.55^{+0.15}_{-0.17} \pm 0.03 \end{array}$	$\begin{array}{c} 0.35^{+0.13}_{-0.12} \pm 0.04 \\ 0.34^{+0.22}_{-0.22} \pm 0.08 \\ 0.50^{+0.18}_{-0.15} \pm 0.05 \\ 0.48^{+0.13}_{-0.12} \pm 0.10 \\ 0.42^{+0.12}_{-0.16} \pm 0.11 \\ 0.47^{+0.18}_{-0.20} \pm 0.13 \end{array}$	$\begin{array}{c} -0.06^{+0.14}_{-0.12} \pm 0.06 \\ -0.19^{+0.24}_{-0.24} \pm 0.04 \\ 0.14^{+0.15}_{-0.12} \pm 0.05 \\ 0.06^{+0.26}_{-0.25} \pm 0.05 \\ 0.58^{+0.34}_{-0.35} \pm 0.06 \\ 0.71^{+0.30}_{-0.32} \pm 0.03 \end{array}$
1.00 - 6.00	$0.25^{+0.09}_{-0.08} \pm 0.03$	$0.47^{+0.13}_{-0.13} \pm 0.04$	$0.03^{+0.11}_{-0.10} \pm 0.03$

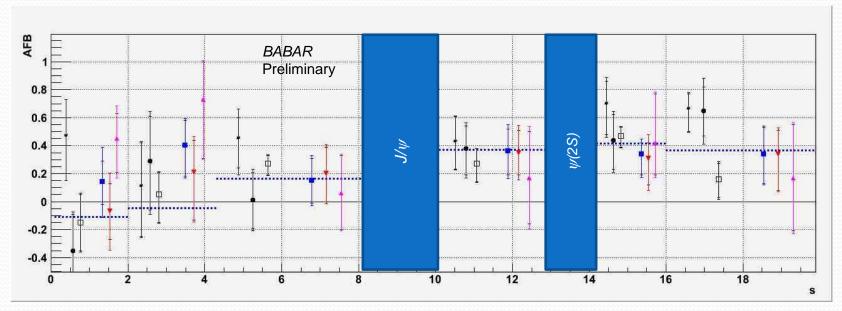
Table 13: Current F_L experimental results.

$s(\text{ GeV}^2/c^4)$	Belle	CDF	LНСЬ	$B \rightarrow K^* \ell^+ \ell^-$	$B^0 \rightarrow K^{*0} \ell^+ \ell^-$	$B^+ \rightarrow K^{*+} \ell^+ \ell^-$
0.1 — 2.00	$0.29^{+0.21}_{-0.18} \pm 0.02$	$0.30^{+0.16}_{-0.16}\pm0.02$	$0.00^{+0.13}_{-0.00} \pm 0.02$	$0.23^{+0.10}_{-0.09} \pm 0.04$	$0.35^{+0.13}_{-0.12}\pm0.03$	$-0.06^{+0.14}_{-0.12} \pm 0.06$
2.00 - 4.30	$0.71^{+0.24}_{-0.24} \pm 0.05$	$0.37^{+0.25}_{-0.24} \pm 0.10$	$0.77^{+0.15}_{-0.15} \pm 0.03$	$0.15^{+0.17}_{-0.14} \pm 0.03$	$0.34^{+0.22}_{-0.22} \pm 0.03$	$-0.19^{+0.24}_{-0.24} \pm 0.03$
4.30 - 8.68	$0.64^{+0.23}_{-0.24} \pm 0.07$	$0.68^{+0.15}_{-0.17} \pm 0.09$	$0.60^{+0.06}_{-0.07} \pm 0.01$	$0.32^{+0.12}_{-0.12} \pm 0.03$	$0.50^{+0.18}_{-0.15} \pm 0.03$	$0.14^{+0.15}_{-0.12} \pm 0.03$
10.09 - 12.86	$0.17^{+0.17}_{-0.15} \pm 0.03$	$0.47^{+0.14}_{-0.14} \pm 0.03$	$0.41^{+0.11}_{-0.11} \pm 0.03$	$0.40^{+0.12}_{-0.12} \pm 0.05$	$0.48^{+0.13}_{-0.12} \pm 0.09$	$0.06^{+0.26}_{-0.25} \pm 0.04$
14.18 - 16.00	$-0.15^{+0.27}_{-0.23} \pm 0.07$	$0.29^{+0.14}_{-0.13} \pm 0.05$	$0.37^{+0.09}_{-0.09} \pm 0.05$	$0.43^{+0.10}_{-0.13} \pm 0.08$	$0.42^{+0.12}_{-0.16} \pm 0.11$	$0.58^{+0.34}_{-0.35} \pm 0.06$
> 16.00	$0.12^{+0.15}_{-0.13} \pm 0.02$	$0.20^{+0.19}_{-0.17} \pm 0.05$	$0.26^{+0.10}_{-0.08} \pm 0.03$	$0.55^{+0.15}_{-0.17} \pm 0.03$	$0.47^{+0.18}_{-0.20} \pm 0.13$	$0.71^{+0.30}_{-0.32} \pm 0.03$
1.00 - 6.00	$0.67^{+0.23}_{-0.23} \pm 0.05$	$0.69^{+0.19}_{-0.21} \pm 0.08$	$0.55^{+0.10}_{-0.10} \pm 0.03$	$0.25^{+0.09}_{-0.08} \pm 0.03$	$0.47^{+0.13}_{-0.13} \pm 0.03$	$0.03^{+0.11}_{-0.10} \pm 0.03$

Table 12: Preliminary A_{FB} results with systematics.

s(GeV ² /c ⁴)	$B \to K^* \ell^+ \ell^-$	$B^0 o K^{*0} \ell^+ \ell^-$	$B^+ o K^{*+} \ell^+ \ell^-$
0.1 - 2.00 $2.00 - 4.30$ $4.30 - 8.68$ $10.09 - 12.86$ $14.18 - 16.00$	$\begin{array}{c} 0.14^{+0.15}_{-0.16} \pm 0.20 \\ 0.40^{+0.18}_{-0.22} \pm 0.07 \\ 0.15^{+0.16}_{-0.16} \pm 0.08 \\ 0.36^{+0.16}_{-0.17} \pm 0.10 \\ 0.34^{+0.08}_{-0.15} \pm 0.07 \\ 0.34^{+0.019}_{-0.15} \pm 0.07 \end{array}$	$\begin{array}{c} -0.07^{+0.20}_{-0.20} \pm 0.19 \\ 0.21^{+0.23}_{-0.34} \pm 0.11 \\ 0.20^{+0.19}_{-0.20} \pm 0.08 \\ 0.35^{+0.16}_{-0.16} \pm 0.11 \\ 0.31^{+0.11}_{-0.19} \pm 0.13 \\ 0.34^{+0.17}_{-0.19} \pm 0.22 \end{array}$	$\begin{array}{c} 0.45^{+0.18}_{-0.24} \pm 0.15 \\ 0.73^{+0.27}_{-0.42} \pm 0.07 \\ 0.06^{+0.27}_{-0.26} \pm 0.07 \\ 0.17^{+0.33}_{-0.33} \pm 0.16 \\ 0.42^{+0.35}_{-0.23} \pm 0.09 \\ 0.17^{+0.38}_{-0.23} \pm 0.11 \end{array}$
> 16.00 1.00 - 6.00	$\begin{array}{c} 0.34^{+0.19}_{-0.21} \pm 0.07 \\ 0.17^{+0.12}_{-0.14} \pm 0.07 \end{array}$	$\begin{array}{c} 0.34^{+0.17}_{-0.26} \pm 0.08 \\ \hline 0.02^{+0.16}_{-0.18} \pm 0.07 \end{array}$	$\begin{array}{c} 0.17^{+0.38}_{-0.38} \pm 0.11 \\ 0.31^{+0.12}_{-0.14} \pm 0.07 \end{array}$

Table 14: Current \mathcal{A}_{FB} experimental results.


s(GeV ² /c ⁴)	Belle	CDF	LHCb	$B \to K^* \ell^+ \ell^-$	$B^0 \to K^{*0} \ell^+ \ell^-$	$B^+ \rightarrow K^{*+}\ell^+\ell^-$
0.1 — 2.00	$0.47^{+0.26}_{-0.32}\pm0.03$	$-0.35^{+0.26}_{-0.23}\pm0.10$	$-0.15^{+0.20}_{-0.20}\pm0.06$	$0.14^{+0.15}_{-0.16}\pm0.20$	$-0.07^{+0.20}_{-0.20}\pm0.19$	$0.45^{+0.18}_{-0.24}\pm0.15$
2.00 — 4.30	$0.11^{+0.31}_{-0.36} \pm 0.07$	$0.29^{+0.32}_{-0.35} \pm 0.15$	$0.05^{+0.16}_{-0.20} \pm 0.04$	$0.40^{+0.18}_{-0.22} \pm 0.07$	$0.21^{+0.23}_{-0.34} \pm 0.11$	$0.73^{+0.27}_{-0.42} \pm 0.07$
4.30 — 8.68	$0.45^{+0.15}_{-0.21} \pm 0.15$	$0.01^{+0.20}_{-0.20} \pm 0.09$	$0.27^{+0.06}_{-0.08} \pm 0.02$	$0.15^{+0.16}_{-0.16} \pm 0.08$	$0.20^{+0.19}_{-0.20} \pm 0.08$	$0.06^{+0.27}_{-0.26} \pm 0.07$
10.09 — 12.86	$0.43^{+0.18}_{-0.20} \pm 0.03$	$0.01^{+0.20}_{-0.20} \pm 0.09$ $0.38^{+0.16}_{-0.19} \pm 0.09$	$\begin{array}{c} 0.27^{+0.06}_{-0.08} \pm 0.02 \\ 0.27^{+0.11}_{-0.13} \pm 0.02 \end{array}$	$0.36^{+0.16}_{-0.17} \pm 0.10$	$0.35^{+0.16}_{-0.16} \pm 0.11$	$\begin{array}{c} 0.06^{+0.27}_{-0.26} \pm 0.07 \\ 0.17^{+0.33}_{-0.33} \pm 0.16 \end{array}$
14.18 — 16.00	$0.70^{+0.16}_{-0.22} \pm 0.10$	$0.44^{+0.18}_{-0.21} \pm 0.10$	$0.47^{+0.06}_{-0.08} \pm 0.03$	$0.34^{+0.08}_{-0.15} \pm 0.07$	$0.31^{+0.11}_{-0.19} \pm 0.13$	$0.42^{+0.35}_{-0.23} \pm 0.09$
> 16.00	$0.66^{+0.11}_{-0.16} \pm 0.04$	$0.65^{+0.17}_{-0.18} \pm 0.16$	$0.16^{+0.11}_{-0.13} \pm 0.06$	$0.34^{+0.19}_{-0.21} \pm 0.07$	$0.34^{+0.17}_{-0.26} \pm 0.08$	$0.17^{+0.38}_{-0.38} \pm 0.11$
1.00 — 6.00	$0.26^{+0.27}_{-0.30} \pm 0.07$	$0.29^{+0.20}_{-0.23} \pm 0.07$	$-0.06^{+0.13}_{-0.14} \pm 0.04$	$0.17^{+0.12}_{-0.14} \pm 0.07$	$0.02^{+0.16}_{-0.18} \pm 0.07$	$0.31^{+0.12}_{-0.14} \pm 0.07$

- In each s bin, from left to right
 - Belle
 - CDF
 - LHCb
 - BABAR K*
 - BABAR K*0
 - BABAR K*+

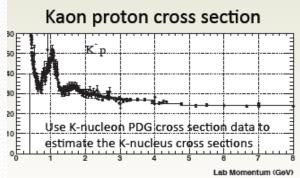
---- SM

 A_{FB}

$\tau^- \rightarrow \pi^- K^0_s (\geq Q \pi^0) \gamma_\tau$

Correction to the raw asymmetry

$$\mathcal{A} = \frac{f_1 A_1 + f_2 A_2 + f_3 A_3}{f_1 + f_2 + f_3}$$
$$= \left(\frac{f_1 - f_2}{f_1 + f_2 + f_3}\right) A_Q$$
$$0.75 \pm 0.04$$


Source	Fractions (%)		
	e-tag	μ -tag	
$\tau^- \to \pi^- K_S^0 (\geq 0\pi^0) \nu_\tau$	78.7 ± 4.0	78.4 ± 4.0	
$\tau^- \to K^- K_S^0 (\ge 0\pi^0) \nu_{\tau}$	4.2 ± 0.3	4.1 ± 0.3	
$\tau^- \to \pi^- K^0 \overline{K}{}^0 \nu_\tau$	15.7 ± 3.7	15.9 ± 3.7	
Other background	1.40 ± 0.06	1.55 ± 0.07	

• Ko et al (2011)

• need to take into account a **correction** on A_Q due to the different **nuclear-interaction cross-section** of the K^0 and \overline{K}^0 mesons with the

material in the detector

correction is -(0.07 ± 0.01)%

