Single W & Z Production at the Tevatron

Moriond Electroweak, March 2012

Thomas Phillips Duke University

Single W&Z Production at the Tevatron

Moriond Electroweak, March 2012

Thomas Phillips Duke University

- What can we learn from single Z's?
 - \rightarrow Interference between γ and Z (i.e. new physics)
 - >weak mixing angle
 - \rightarrow vector & axial-vector q_{light} -Z couplings
 - → Spin of the gluon
 - Test/improve state-of-the-art QCD modeling
 - resummation technology
 - O($\alpha_{\rm s}{}^2$): Fully exclusive and differential for
 - lepton pair
 - final state partons
 - Finite boson widths; γ -Z interference
 - boson-lepton spin correlations
 - inputs to help improve PDF's

Tevatron Experiments

Z/y F/B Asymmetry

> Select $p\overline{p}$ -> Z/ γ^* -> e^+e^-

→ two electron candidates with $E_T > 25$ GeV

- isolated
- at least one with $|\eta|$ < 1.0 and matched to a track
- opposite charge if both central (CC)

→157,553 in 5.0/fb

- 73755 CC
- 83798 CE

Z/y F/B Asymmetry

M_{ee} (GeV) 9

Weak Mixing Angle

AFB

0.5

0

-0.5

50

Light-quark Couplings to Z

CDF F/B Asymmetry

Forward-Backward Asymmetry, A_{FB}

CDF also measured Z/ γ F/B Asymmetry but chose to measure sin² θ_W using angular coefficients instead

Single Z's at CDF

 $Z/\gamma \rightarrow e^+e^-$ in 2.1 fb⁻¹: Central-central (CC) E_T > 25/15 GeV 51951 $|\eta_{det}| < 1.1$ Central-plug (CP) E_T > 20 GeV C: |ŋ_{det}|<1.1 63752 P: 1.2<|η_{det}|<2.8 \geq Plug-plug (PP) E_T > 25 GeV 22469 1.2<|η_{det}|<2.8

Low backgrounds because tracks required: QCD (data) 0.3%; EWK (MC) 0.2%

Drell-Yan Production & Decay

 $\mathcal{O}(\alpha_{s})$:

- NNLO calculation
 FEWZ2
 - →fixed order $\mathcal{O}(\alpha_s^2)$
 - →MSTW2008 NNLO PDF's
 - →fully & exclusively differential in
 - final state leptons
 - final state partons

> Resummation calculation

→ResBos

- Collins, Soper & Sterman formalism
- fixed order perturbative QCD
- all-order summation of large terms from gluon emission

14

Angular Distributions

 $d\sigma$

- General expression for $d\cos\theta d\phi$ angular dist. of final state electron
 - → Collins-Soper frame
 - \rightarrow A₀ to A₇ fcns of
 - M_{ee} , P_{T} , rapidity y
 - \rightarrow In pQCD,
 - $A_5 A_6 A_7$ near 0
 - $A_1 A_3$ small (integrate $\pm y$)
 - A_4 sensitive to $\sin^2\theta_W$
 - $A_0 = A_2$
 - $= P_{\tau^2}/(M^2+P_{\tau^2})$ for qq
 - = $5P_{\tau}^2/(M^2+5P_{\tau}^2)$ for $q\overline{q}$

- $\propto (1 + \cos^2 \theta)$ + $\frac{1}{2}A_0(1-3\cos^2\theta) + A_1\sin 2\theta\cos\phi$
- + $\frac{1}{2}A_2\sin^2\theta\cos 2\phi + A_3\sin\theta\cos\phi$

+
$$A_4 \cos \theta + A_5 \sin^2 \theta \sin 2\phi$$

$$+ A_6 \sin 2\theta \sin \phi + A_7 \sin \theta \sin \phi$$

Can use A_4 to measure $\sin^2\theta_W$

Last expression is Lam-Tung equation Only valid for vector (spin-1) gluons; badly broken for scalar (spin-0) gluons

Angular Coefficients

Angular Results

 A_0 - A_2 consistent with 0, as expected for vector gluon

Extract using A_4 : $sin^2\theta_W = 0.2329 \pm 0.0008_{-0.0009}^{+0.0010}$ (QCD)

Z Transverse Momentum

- Same dataset is used to prove measure transverse momentum as angular coefficients
- ➤ At low P_T, smearing is large (2.2 GeV/c) compared to bin size (0.5)
 - →Correct Pythia P_T to get flat data/sim
 - Juse simulated events to get bin-by-bin unfolding

Z Transverse Momentum

Z Transverse Momentum

ResBos total cross section normalized to data Precise enough to help refine DY P_T phenomenology

Z Boson production is well described by the Standard Model!

Precision measurements of

- $\rightarrow A_{FB}$
 - $sin^2\theta_{eff} = 0.2309 \pm 0.0008 \pm 0.0006$
 - vector and axial-vector coupling of Z to u & d quarks
- → Angular Coefficients
 - Consistent with vector gluon
 - $sin^2\theta_W = 0.2329 \pm 0.0008^{+0.0010}_{-0.0009}$ (QCD)
- $\rightarrow P_T$
 - precise enough to help refine Drell-Yan phenomenology

" I ALWAYS BACK UP EVERYTHING."

 $Z/\gamma \rightarrow e^+e^- d\sigma/dy$

 $L = 2.1 \text{ fb}^{-1}$

2.5

2

2

2.5

$\sin^2 \theta_{eff}^l = 0.2309 \pm 0.0008 \pm 0.0006$

Electroweak radiative corrections result in different values for up and down quarks compared to electrons:

$$\sin^2 \theta_{eff}^u = \sin^2 \theta_{eff}^l - 0.0001$$
$$\sin^2 \theta_{eff}^d = \sin^2 \theta_{eff}^l - 0.0002$$