Cryogenic Dark Matter Search (CDMS): Recent Results and Perspective

Nader Mirabolfathi
UC Berkeley
Rencontres de Moriond EW, March 2012

- Quick review of WIMP detection principle
- Results
- Low energy territory
- Modulation?
- CDMS new detector design
- Perspective

WIMP Direct detection challenges:

Backgrounds, Backgrounds and again Backgrounds

• Low recoil Energies	and very low interaction rates:
	□ ~ 10 keV □ Current Exp Limit < 1 evt/100 kg/day, ~< 10 ⁻¹ evt/kg/day □ Goal < 1 evt/tonne/year, ~< 10 ⁻⁵ evt/kg/day
Activity of typical Human	
	□~10 kBq (10 ⁴ decays per second, 10 ⁹ decays per day)
Environmental Gamma Activity in unshielded detector	
I	☐ 10 ⁷ evt/kg/day (all values integrated 0–100 keV).☐ This can be reduced to ~10 ² evt/kg/day using 25 cm of Pb.☐ Still very high rate compared to the expected signal.

An event-by-event discrimination based on Nuclear versus Electron recoil is therefore inevitable!

CDMS Principle

- Large Ge or Si crystals (~kg):
 - cooled to: T < 0.04 K
- Measure recoil energy via Lattice vibrations (phonons) in Ge or Si
- Measure the Ionization. E- field: ~3V/cm
- Ionizing power or Ionization Yield
 - Y_{electron-recoil}> Y_{nuclear-recoil}
 - Event-by-event discrimination
- Near surface events
 - Electron recoil but poor charge collection
 - Near geometrical boundaries
- CDMS has a solution:
 - Measure phonons before they reach equilibrium
 - Reconstruct the position of the events
 - Identify near surface events

CDMSII at Soudan

CDMS progress

52.6 kg.days 10/2003 to 01/2004

Phys. Rev. Lett. 93, 211301 (2004)

1.5 kg Ge

93.1 kg.days 03/2003 to 08/2004

Phys. Rev. Lett. 96, 011302 (2006)

4.5 kg Ge

397 kg.days 10/2006 to 03/2007

1200 kg.days 04/2006 to 10/2008

So far independent of the exposure!

But ZIPs seem to have reached their rejection limit and can't offer better sensitivities.

CDMS remains background free:

Science 327, p. 1619, arXiv:0912.3592

Phys. Rev. Lett. 102, 011301 (2009)

Low Threshold Analysis

Nuclear Recoil Selection

- Nuclear recoil acceptance region defined as $(+1.25,-0.5)\sigma$ band in ionization energy
 - Maximizes sensitivity to nuclear recoils while minimizing expected backgrounds

Limits

- Conservatively assume all candidates to be candidate events
 - No background subtraction!
- Limits set using optimum interval method:
 - S. Yellin, PRD, 66, 032005 (2002); arXiv:0709.2701v1 (2007)
- Energy intervals ordered by detector
- For spin-independent, elastic scattering, 90% CL limits incompatible with DAMA/LIBRA and CoGeNT

90% CL upper limits on elastic scattering cross section

Ahmed et al., PRL 106, 131302 (2011)

Akerib et al., PRD 82, 122004 (2010), arXiv:1010.4290

Electron Recoil Backgrounds

- Observed candidates can plausibly be explained by extrapolations of background estimates from sidebands
 - Possibly significant systematic errors due to extrapolations to low energy
- We do not subtract these backgrounds when setting limits

Any hint of an Annual Modulation?

A Note On The Energy Scales

- CoGeNT or any single measurement detector is unable to determine the interaction type: Electron Recoil (ER) versus Nuclear Recoil (NR).
- But the ionization yield for an ER is different than an NR in Ge e.g. x3 at E~10 keV and x5 at E~keV i.e. For CoGeNT, NR and ER with the same recoil energy appear at two different energies.
- CDMS can reconstruct the recoil energy independent of the interaction type.
- When studying CoGeNT energy intervals, it is important to make an assumption of what type of recoil: ER or NR.
- keV_{ee} is the scale which is used when all interactions are assumed to be of the type ER.

Search for Annual Modulation

- CDMS II data nearly two annual cycles, from Oct. 2006 to Sept. 2008
- Nuclear recoil acceptance region defined as $\pm 2\sigma$ band in ionization energy to increase sensitivity
- We consider 3 energy intervals between 5 and 11.9 keV $_{nr}$: [5,7.3], [7.3,9.6], and [9.6,11.9] keV $_{nr}$ equivalent to CoGent [1.2,1.8], [1.8,2.5], and [2.5,3.2] keV $_{ee}$
 - 5 keV_{nr} threshold high enough to have a nearly 100% trigger efficiency
 - 11.9 keV_{nr} maximum energy to match the highest energy of CoGeNT
- In the lowest energy bin, [5, 7.3] keV_{nr}, the nuclear-recoil rate measured for CDMS is:

- Maximum likelihood estimate for the CoGeNT modulation amplitude is 0.35 ± 0.015 [keV_{nr} kg day] ⁻¹
 - → Would require modulation fraction in CDMS of nearly 100% (same for full energy range)

Results: Nuclear Recoil Singles

- No significant evidence for annual modulation
- In the energy range [5, 11.9] keV_{nr} , all modulated rate with amplitudes greater than 0.07 [keV_{nr} kg day]⁻¹ are ruled out with a 99% confidence.
 - Annual modulation signal of CDMS and CoGeNT are incompatible at >95% C.L. (preliminary) for the full energy range (if CoGeNT signal originates in a nuclear-recoil population)

Results: Nuclear Recoil Singles

- No significant evidence for annual modulation
- In the energy range [5, 11.9] keV_{nr} , all modulated rate with amplitudes greater than 0.07 [keV_{nr} kg day]⁻¹ are ruled out with a 99% confidence.
 - Annual modulation signal of CDMS and CoGeNT are incompatible at >95% C.L. (preliminary) for the full energy range (if CoGeNT signal originates in a nuclear-recoil population)

Amplitude of Modulation versus E:

68 % confidence intervals, Phase=108 days

Results: Electron-recoil-dominated Singles/Multiples

- Data sample with no ionization-yield cut
- No significant evidence for annual modulation for both singles and multiples
- Little overlap with the energy range of CoGeNT under the hypothesis of an ER modulation (3.2 keVee max for CoGeNT)
 - → This result cannot exclude the possibility that the modulation observed by CoGeNT is due to electron-recoils.

Singles

Multiples

CDMS current Status and Future Plans

CDMS New detector design: SuperCDMS Soudan

- •New iZIP design:
 - Interleaved ionization and phonon sensors
 - Phonon sensors on both faces
 - Larger detector: 2.5 x CDMS II ZIPs
- •Almost entirely remove near surface event background
 - •1:300.000 from ionization alone
- SuperCDMS currently running with 15 iZIPs:
 - •Expect to reach 5-8 x 10⁻⁴⁵ cm²

CDMS New detector design: SuperCDMS Soudan

- •New iZIP design:
 - Interleaved ionization and phonon sensors
 - Phonon sensors on both faces
 - •Larger detector: 2.5 x CDMS II ZIPs
- •Almost entirely remove near surface event background
 - •1:300.000 from ionization alone
- SuperCDMS currently running with 15 iZIPs:
 - •Expect to reach 5-8 x 10⁻⁴⁵ cm²

From CDMSII to SNOlab and Beyond

- Move to deeper site: SNOlab, Sudbury
- •SuperCDMS SNOlab in R&D phase:
 - Acquired large crystals and testing.
 - Better background rejection.
 - Faster production throughput.
 - Increased resolution for low threshold
- •GEODM:
 - •After SuprCDMS SNOlab
 - •1.5 Ton of 5kg Ge detectors

R&D for 100 kg: $3x10^{-46}$ cm²

SuperCDMS Soudan 0.625 kg

Total 9 kg projected: ~5x10⁻⁴⁵ cm²

CDMS II 0.25 kg

Total 4.5 kg could reach: 3.8x10⁻⁴⁴ cm²

Conclusion

- CDMS technology based on simultaneous measurement of ionization and phonons in Ge detectors has already proven to be very promising for a background free experiment.
- CDMS major background i.e. near surface events, seems to be totally under control with the new detector design: iZIP.
- CDMS is currently running with 9 kg of Ge iZIP detectors and should reach sensitivity better than 8 x 10⁻⁴⁵ cm².
- The results from the low threshold analysis of CDMSII not compatible with 7 GeV/c² WIMPs.
- CDMSII data doesn't show significant evidence for annual modulation for nuclear recoils between 5-11.9 keV_{nr}
 Annual modulation signal of CDMS and CoGeNT are incompatible at >95% C.L. for the full energy range
- No significant evidence for annual modulation for electron-recoil dominated sample in the same energy range (corresponding to $3-7.4 \text{ keV}_{ee}$), however little overlap with the energy range of CoGeNT.
- SuperCDMS SNOlab is in the R&D phase to reach $3x10^{-46}$ cm² sensitivity.

DOE

CDMS/SuperCDMS Collaborations

NSF

California Institute of Technology

Z. Ahmed, J. Filippini, S.R. Golwala, D. Moore

Fermi National Accelerator Laboratory

D. A. Bauer, F. DeJongh, J. Hall, D. Holmgren, L. Hsu, E. Ramberg, R.L. Schmitt, J. Yoo

Massachusetts Institute of Technology

E. Figueroa-Feliciano, S. Hertel, S.W. Leman, K.A. McCarthy, P. Wikus

NIST

K. Irwin

Queen's University

C. Crewdon*, P. Di Stefano*, O. Kamaev, C. Martinez*, K.Page*, P. Nadeau*, W. Rau, Y. Ricci*

Saint Olaf College

A. Reisetter

Santa Clara University

B. A. Young

SLAC National Accelerator Laboratory/KIPAC*

M. Asai*, A. Borgland*, D. Brandt*, P.L. Brink, W. Craddock*, E. do Couto e Silva*, G. Godfrey*, J. Hasi*, M. Kelsey*, C. J. Kenney*, P. C. Kim*, R. Partridge*, R. Resch*, K. Schneck*, A. Tomada, D. Wright*

Southern Methodist University

J. Cooley, B. Karabuga, H. Qiu

* new collaborators or new institutions in SuperCDMS

Stanford University

B. Cabrera, M. Cherry, L. Novak, R.W. Ogburn, M. Pyle, M. Razeti*, B. Shank*, S. Yellin, J. Yen*

Syracuse University

R. Bunker, Y. Chen*, M. Kiveni, M. Kos, R. W. Schnee

Texas A&M

K. Koch*, R. Mahapatra, M. Platt*, K. Prasad*, J. Sander

University of California, Berkeley

M. Daal, T. Doughty, N. Mirabolfathi, A. Phipps, B. Sadoulet, D. Seitz, B. Serfass, D. Speller, K.M. Sundqvist

University of California, Santa Barbara

D.O. Caldwell, H. Nelson

University of Colorado Denver

B.A. Hines, M.E. Huber

University of Florida

T. Saab, D. Balakishiyeva, B. Welliver *

FT-UAM/CSIC and Universidad Autonoma de Madrid*

D. G. Cerdeño*, L. Esteban*

University of Minnesota

H. Chagani*, J. Beaty, P. Cushman, S. Fallows, M. Fritts, T Hofer*, O. Kamaev, V. Mandic, X. Qiu, R. Radpour*, A. Villano*, J. Zhang

Stability Cut Efficiencies

- Test stability nuclear-recoil band and charge fiducial ("Qinner") cut efficiencies using calibration data
- Using Feldman-Cousins method, determine confidence limits on the amplitude and phase of annual modulation

- Nuclear-recoil cut: efficiency modulation upper limit of 1.2% at 90% confidence level
- Qinner cut: efficiency modulation upper limit 2.3 % at 90% confidence level