

First light...

at HAWC Observatory's high altitude TeV gamma ray detector in Mexico

Daniel Fiorino for the HAWC Observatory 4 March 2012 Rencontres de Moriond

Aerial View of HAWC Site

The HAWC Observatory

High altitude 4100m

Next generation water **Cherenkov detector** (Milagro was previous generation)

High energy air shower array ~100 GeV - 100 TeV

Cosmic Ray Origins, Gamma Ray Bursts, many more

Ititude

ater

Cherenk

HAWC 300 **Upon Completion**

HAWC Equipment

Cherenkov Tanks

Corrugated Steel
4.0m tall, 7.3m wide
Target for Cherenkov light
4 photomultiplier tubes

Photomultiplier Tubes

900 Hamamatsu 8" bulb
Reused from Milagro
Sensitive to UV-optical blue
300 High quantum efficiency (~30%)
Lower energy threshold

<u>Unbiased Skymap</u> <u>Galactic Sources of Gamma Rays</u>

Supernovae Remnants
Crab Nebula (SN 1054)
Standard Candle... Recent Flares
Extended Objects (e.g. Molecular Clouds)
Galactic Plane

Extragalactic (z<0.1) Sources of Gamma Rays

Active Galactic Nuclei
flaring
multiwavelength campaign (Fermi-LAT)
Gamma Ray Bursts

counterpart (Fermi-LAT/optical telescope alerts)
assumptions of spectra, constrain EBL

Nearby Galaxies starburst galaxies (many SNRs)

VAMOS – Test Array

Verification and Monitoring of Systems

7 Cherenkov tanks

3 months of data

7 photomultipliers per tank

Exceeded set milestones
Improved deployment technique
Online systems running
Analysis Chain -> Skymap

First Light

Stay Tuned...

30 Tanks are scheduled to be operational this Fall (2012)

Site is leveled Tank positions are laid out Electronics ~ May 2012 Verify Cosmic Ray Rates Zenith Alignment Cosmic Ray Anisotropy? Moon Shadow?

HAWC 100 Tanks (> Milagro sensitivity)

The HAWC Collaboration

Colorado State University George Mason University Georgia Tech University Harvey Mudd University Los Alamos National Lab Michigan State University Michigan Tech University NASA/Goddard Ohio State at Lima
Pennsylvania State University
University of California-Irvine
University of Maryland
University of New Hampshire
University of New Mexico
University of Utah
University of Wisconsin-Madison

Benemerita Universidad Autonomica de Puebla Centro de Investigacion y de Estudios Avanzados Universidad Autonoma de Chiapas Universidad de Guadalajara Universidad de Guanajuato Universidad Michoacana de San Nicolas de Hidalgo Universidad Nacional Autonoma de Mexico

The HAWC Observatory

HAWC Improves Upon Milagro

Water Cherenkov experiments provide unbiased information that no others can provide. HAWC is the logical next step.

Optically isolated tanks

Better resolution (timing and charge)

Higher altitude
Closer to shower maximum
More particles, lower energy threshold

High quantum efficiency PMTs
More Cherenkov light yield

Improved Angular Resolution

Error in reconstructing arrival direction

Simulated showers (CORSIKA) incident on simulated HAWC (GEANT4)

Competitive with imaging air Cherenkov telescopes at highest energies

Optical isolation

Dense sampling

HAWC Observatory

PSF = Point spread function

Improved Energy Resolution

Error in reconstructing energy

Simulated showers (CORSIKA) incident on simulated HAWC (GEANT4)

Improved source spectra over Milagro

Energy measured at ground is not a perfect indicator of primary energy

Primary Actual error in estimating primary energy

At Ground Energy resolution to energy at ground level

Daniel W. Fiorino

Improved y/Hadron Separation

Error in determining species

Simulated showers (CORSIKA) incident on simulated HAWC (GEANT4)

Optical isolation

High quantum efficiency PMTs

Improved Effective Area

Effective area of detector of shower

Simulated showers (CORSIKA) incident on simulated HAWC (GEANT4)

Trigger on lower energy showers

Milagro had outriggers