Tensions With the 3 – v Paradigm

Boris Kayser, Fermilab EW Moriond 2012

Thanks to the Moriond organizers for quite a few things ...

Thanks to Alan Bross, Patrick Huber, Georgia Karagiorgi, and Joachim Kopp for inputs.

The (Mass)² Spectrum

4

The Interactions

The interactions of the neutrinos are assumed to be those of the Standard Model (SM), modified to incorporate leptonic mixing.

The neutrino couplings to the W:

But the neutrinos $v_{e,\mu,\tau}$ of definite flavor are superpositions of the neutrinos of definite mass:

$$|v_{\alpha}\rangle=\sum_{i}U^*_{\alpha i}|v_{i}\rangle$$
 . Neutrino of flavor $\alpha=e,\,\mu,\,\mathrm{or}\,\tau$. Unitary leptonic mixing matrix

The neutrino couplings to the Z:

Oscillation among ν_e, ν_μ , and ν_τ does not change the Neutral Current event rate.

The Mixing Matrix *U*

$$U = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \times \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \times \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c_{ij} \equiv \cos \theta_{ij}$$
$$s_{ij} \equiv \sin \theta_{ij}$$

$$c_{ij} = \cos \theta_{ij}$$

$$s_{ij} = \sin \theta_{ij}$$

$$\times \begin{bmatrix} e^{i\alpha_1/2} & 0 & 0 \\ 0 & e^{i\alpha_2/2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
Doesn't affect

oscillation

$$\theta_{12} \approx 34^{\circ}, \ \theta_{23} \approx 39-51^{\circ},$$

 $\sin^2 2\theta_{13} = 0.092 \, \theta.023 \, \text{ks} \, (\text{s} \, \text{l} \, \text{a} \, \text{b})_3 \, \text{k} \, (\text{syst}) \, (\text{Daya Bay})_3$

 δ and $\theta_{13} \neq 0$ would lead to $P(\overline{\nu_{\alpha}} \rightarrow \overline{\nu_{\beta}}) \neq P(\nu_{\alpha} \rightarrow \nu_{\beta})$. *CP violation*

The Implications of the Value of θ_{13}

With $\sin^2 2\theta_{13}$ not much below 0.1, NOvA has a good shot at determining whether the neutrino mass spectrum looks like \equiv or \equiv .

(Mark Messier's talk)

The evidence now seems quite strong that $\sin^2 2\theta_{13} > 0.01$.

This is very encouraging for experiments that propose to look for CP violation in neutrino oscillation by comparing $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ with $v_{\mu} \rightarrow v_{e}$.

$$P(v_{\mu} \rightarrow v_{e}) \sim \sin^{2} 2\theta_{13}$$

A conventional accelerator neutrino beam from π and K decay is mostly ν_{μ} , but has a ~1% ν_{e} contamination.

Studying $v_{\mu} \rightarrow v_{e}$ with a conventional beam would have been difficult if $\sin^{2}2\theta_{13}$ had been less than 0.01.

Why CP Violation (**P**) In Neutrino Oscillation Would Be Very Interesting

It would establish that **P** is not special to quarks.

A major motivation to look for it:

Its observation would make it more plausible that —

- the baryon-antibaryon asymmetry of the universe
 - arose, at least in part, through **Leptogenesis**.

Leptogenesis

Explains the baryon-antibaryon asymmetry of the universe by CP-violating heavy neutrino decays.

Heavy
$$(m_N > 10^9 \text{ GeV})$$
Majorana neutrino
$$\Gamma(N \to \ell^- + H^+) \neq \Gamma(N \to \ell^+ + H^-)$$

This **P** creates a **lepton-antilepton** asymmetry.

The SM Sphaleron process converts part of this asymmetry into the observed *baryon-antibaryon* asymmetry.

Generically, leptogenesis and light-neutrino EP imply each other.

(B.K.)
1012.4469)

The 3-v paradigm successfully describes many experimental results,

but not all.

The Non-SM

$$P(\overline{\nu}_{\mu} \to \overline{\nu}_{\mu}) \neq P(\nu_{\mu} \to \nu_{\mu})$$

Possibility

Oscillation

When the neutrino spectrum has effectively only 2 levels

P. Vahle, Neutrino 2010

Non-SM neutrino interactions?? (Kopp, Machado, Parke)

P. Vahle, Neutrino 2010

$$v_{\tau} + N \rightarrow X + \mu$$

(Kopp, Machado, Parke)

MINOS: With 70% More \overline{v} Data

Are There More Than 3 Mass Eigenstates?

Are There

Sterile Neutrinos?

70001

Sterile Neutrino

One that does not couple to the SM W or Z boson

A "sterile" neutrino may well couple to some non-SM particles. These particles could perhaps be found at LHC or elsewhere.

The Hint From LSND

The LSND experiment at Los Alamos reported a rapid $\bar{v}_{\mu} \rightarrow \bar{v}_{e}$ oscillation at $L(km)/E(GeV) \sim 1$.

$$P(\overline{v_{\mu}} \rightarrow \overline{v_{e}}) = \sin^{2} 2\theta \sin^{2} \left[1.27 \Delta m^{2} \left(eV^{2} \right) \frac{L(km)}{E(GeV)} \right] \sim 0.26\%$$
From μ^{+} decay at rest; E ~ 30 MeV

At least 4 mass eigenstates

 \vdash {from measured $\Gamma(Z \rightarrow \nu \bar{\nu})$ } At least 1 sterile neutrino

The LSND-favored region

The Hint From MiniBooNE

In MiniBooNE, both L and E are ~ 17 times larger than they were in LSND, and L/E is comparable.

MiniBooNE has reported both $v_{\mu} \rightarrow v_{e}$ and $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ results.

MiniBooNE $\nu_{\mu} \rightarrow \nu_{e}$ Search

No excess above background above 0.475 GeV.

MiniBooNE $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ Search; 2010 Results

(Phys.Rev.Lett.105:181801, 2010)

The v and \overline{v} results can differ due to CP violation.

MiniBooNE $\overline{v}_{\mu} \rightarrow \overline{v}_{e}$ Search; 2011 Results

E. Zimmerman and M. Shaevitz at PANIC 2011

The Hint From Reactors

The prediction for the un-oscillated \overline{v}_e flux from reactors, which has $\langle E \rangle \sim 3$ MeV, has increased by about 3%. (Mueller et al., Huber)

Measurements of the \overline{v}_e flux at (10 - 100)m from reactor cores now show a $\sim 6\%$ disappearance.

(Mention et al.)

Disappearance at $L(m)/E(MeV) \gtrsim 1$ suggests oscillation with $\Delta m^2 \gtrsim 1$ eV², like LSND and MiniBooNE.

The Hint From ⁵¹Cr and ³⁷Ar Sources

These radioactive sources were used to test gallium solar v_e detectors.

$$\frac{\text{Measured event rate}}{\text{Expected event rate}} = 0.86 \pm 0.05$$
(Giunti, Laveder)

Rapid disappearance of v_e flux due to oscillation with a large Δm^2 ??

The Hint From Cosmology

Big Bang Nucleosysthesis (BBN) and CMB anisotropies count the effective number of relativistic degrees of freedom, $N_{\rm eff}$, at early times.

Light sterile neutrinos mixed with the active ones as required by the terrestrial anomalies would very likely have thermalized in the early universe.

Then N_{eff} grows by 1 for each sterile species.

The evidence suggests that perhaps $N_{\rm eff} > 3$.

$N_{\rm eff}$ From BBN

Model	Data	$N_{ m eff}$	Ref.
$\eta + N_{ m eff}$	$\eta_{\text{CMB}} + Y_{\text{p}} + \text{D/H}$	3.8(+0.8)	[10]
	$\eta_{\text{CMB}} + Y_{\text{p}} + \text{D/H}$	< (4.05)	[11]
		3.85 ± 0.26	[13]
	Y_p+D/H	3.82 ± 0.35	[13]
		3.13 ± 0.21	[13]
$\eta + N_{\text{eff}}$, $(\Delta N_{\text{eff}} \equiv N_{\text{eff}} - 3.046 \ge 0)$	η_{CMB} +D/H	3.8 ± 0.6	[12]
	$\eta_{\text{CMB}} + Y_{\text{p}}$	$3.90^{+0.21}_{-0.58}$	[12]
	Y_p +D/H	$3.91^{+0.22}_{-0.55}$	[12]

N_{eff} From CMB

Model	Data	$N_{ m eff}$	Ref.
N _{eff}	W-5+BAO+SN+H ₀	4.13 ^{+0.87(+1.76)} _{-0.85(-1.63)}	[26]
	W-5+LRG+ H_0	$4.16^{+0.76(+1.60)}_{-0.77(-1.43)}$	[26]
	W-5+CMB+BAO+XLF+ f_{gas} + H_0	3.4+0.6	[29]
	W-5+LRG+maxBCG+H ₀	$3.77^{+0.67(+1.37)}_{-0.67(-1.24)}$	[26]
	W-7+BAO+ H_0	4.34+0.86	[18]
	W-7+LRG+ H_0	4.25+0.76	[18]
	W-7+ACT	5.3 ± 1.3	[23]
	W-7+ACT+BAO+H ₀	4.56 ± 0.75	[23]
	W-7+SPT	3.85 ± 0.62	[24]
	W-7+SPT+BAO+H ₀	3.85 ± 0.42	[24]
	W-7+ACT+SPT+LRG+H ₀	$4.08^{(+0.71)}_{(-0.68)}$	[30]
	W-7+ACT+SPT+BAO+ H_0	3.89 ± 0.41	[31]
$N_{ m eff} + f_{ u}$	W-7+CMB+BAO+H ₀	4.47(+1.82)	[32]
	W-7+CMB+LRG+H ₀	$4.87^{(+1.86)}_{(-1.75)}$	[32]
$N_{\rm eff} + \Omega_k$	W-7+BAO+H ₀	4.61 ± 0.96	[31]
	W-7+ACT+SPT+BAO+H ₀	4.03 ± 0.45	[32]
$N_{\text{eff}} + \Omega_k + f_v$	W-7+ACT+SPT+BAO+H ₀	4.00 ± 0.43	[31]
$N_{\text{eff}}+f_{\nu}+w$	W-7+CMB+BAO+H ₀	3.68(+1.90)	[32]
	W-7+CMB+LRG+H ₀	$4.87^{(+2.02)}_{(-2.02)}$	[32]
$N_{\text{eff}} + \Omega_k + f_v + w$	W-7+CMB+BAO+SN+H ₀	4.2+1.10(+2.00)	[33]
	W-7+CMB+LRG+SN+H ₀	4.3+1.40(+2.30)	[33]

More precise information will come from the Planck satellite.

$$\sum_{i} m(v_i)$$
 In the Early Universe

Large Scale Structure in the universe and the CMB suggest that —

$$\sum_{i} m(v_i) < (0.17 - 1.0) \text{ eV}$$

$$\left(\begin{array}{c} \text{Seljak, Slosar, McDonald} \\ \text{Hannestad; Pastor} \end{array}\right)$$

Possible tension with terrestrial experiments if $\Delta m^2 > 1 \text{ eV}^2$.

However, in cosmology, there are parameter degeneracies.

Global Fits To Short-Baseline Terrestrial Data

The Spectra That Are Tried

Short-Baseline experiments have an L/E too small to see the splitting between v_1 , v_2 , and v_3 .

The Bottom Line

3 + 1 spectra do not provide a good fit to all the data.

They do not violate CP.

They cannot accommodate the CP-violating simultaneous presence of a ⊽ signal in LSND and MiniBooNE, and the absence of a ∨ signal in MiniBooNE.

(Karagiorgi; Kopp, Maltoni, and Schwetz)

3 + 2 spectra can violate CP, so they do better, but there is still tension between appearance data and disappearance data.

Other phenomenological models are being tried

So, Are There Sterile Neutrinos?

Not speaking for anybody else,

my personal impression is —

Individually or taken together, the hints are certainly not convincing.

But —

They are interesting enough to call for further, hopefully definitive, investigation.

Fermilab Short Baseline Neutrino Focus Group

From the charge:

"... consider new generation detectors and/or new types of neutrino sources that would lead to a definitive resolution of the existing anomalies."

Started ~ January, 2012

Report due ~ May, 2012

Ideas For Future Experiments

Coherent Neutral-Current Scattering

This process has the same rate for any incoming *active* neutrino, v_e , v_μ , or v_τ .

But the Z does not couple to $v_{sterile}$.

If $v_{active} \rightarrow v_{sterile}$, the coherent scattering event rate will oscillate with it.

Ideas—

Electron-capture monoenergetic v_e source

Kinetic energy of nuclear recoil ~ Few x 10 eV.

Use bolometric cryogenic detector.

(Formaggio et al.)

Cyclotron pion & muon decay-at-rest neutrino source

Two sources — one detector

Kinetic energy of nuclear recoil ~ keV.

Detection via DM-inspired detectors.

(Anderson et al.)

Caveat: If $\Delta m^2 >> 1$ eV², the oscillation may be too fast to see.

Position Dependence Within One Detector

For $E \sim 30$ MeV $\overline{\nu}_{\mu}$ from μ^{+} decay at rest, and $\Delta m^{2} \sim 1$ eV², the oscillation maximum is at ~ 40 m.

(Agarwalla et al.)

Two-Detector Short Baseline Experiments At Accelerators

Compare event rates in a near and a far detector.

This is a good way to deal with flux uncertainties, so long as the neutrinos have not already oscillated before reaching the near detector..

Ideas —

Two ICARUS detectors in the CERN PS beam

Two LAr detectors in the FNAL Booster beam

(Guenette et al.)

A Very Low Energy Neutrino Factory

$$E_{\mu} = (2 - 3) \text{ GeV}$$

If store μ⁺, can study—

$$\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$$

followed by —

$$v_e \rightarrow v_\mu$$
.

LSND reported
$$\overline{v}_{\mu} \rightarrow \overline{v}_{e}$$
. $P(v_{e} \rightarrow v_{\mu}) = P(\overline{v}_{\mu} \rightarrow \overline{v}_{e})$

(Bross et al.)

Summary

There are interesting tensions with the 3 - v paradigm.

Hopefully we will be able to determine what is behind them in the not too distant future.