GRAND UNIFICATION WITH AND WITHOUT SUPERSYMMETRY

Alejandra Melfo

J. Stefan Institute, Ljubljana, Slovenia Universidad de Los Andes, Mérida, Venezuela

In collaboration with

Borut Bajc Goran Senjanović Francesco Vissani Alba Ramírez

GUTs and neutrino mass

SO(10): fermions in 16-dimensional (spinor) representation SU(5): fermions in 5 and 10 representations

 $\Rightarrow \nu_R$ is a singlet

- adding a singlet to the theory implies a lot new parameters
- SU(5) breaks directly to $SU(3) \times SU(2) \times U(1)$
 - no intermediate scales

 m_{ν} can be related to an intermediate scale

The B - L breaking scale

Best idea for small m_{ν} : the see-saw mechanism give neutrino a mass by breaking B-Lat a large scale M_R

Neutrino masses suppressed by the large scale:

$$m_{\nu} = \propto \frac{M_W^2}{M_R}$$
 (omitting Yukawa couplings...)

 $m_{\nu} \sim 0.01 eV$ $M_R \sim 10^{13} GeV$

... An intermediate scale would be convenient

Intermediate scales in SO(10)

SO(10) $M_{x} \Downarrow \langle S \rangle$ $SU(4)_{C} \times SU(2)_{L} \times SU(2)_{R}$ $M_{c} \Downarrow \langle A \rangle$ $SU(3)_{C} \times SU(2)_{L} \times SU(2)_{R} \times U(1)_{B-L}$ $M_{R} \Downarrow \langle \Delta^{c} \rangle$ $SU(3)_{C} \times SU(2)_{L} \times SU(2)_{L} \times U(1)_{Y}$

Non-SUSY: intermediate scales

$$\frac{1}{\alpha_i(M_Z)} = \frac{1}{\alpha_U} - \frac{b_i}{2\pi} \ln \frac{M_R}{M_W} - \frac{b'_i}{2\pi} \ln \frac{M_U}{M_R}$$

Supersymmetry and GUTs (a historical note)

Einhorn, Jones, 1982

Marciano, Senjanović, 1982

Supersymmetry at a scale $\sim M_W - TeV \Rightarrow$ Unification

But with: $sin^2\theta_W(M_W) = [0.23 - 0.26]$

At the time: $\rho \simeq 0.99$ with $m_t \sim 20 GeV$

 $\Rightarrow \sin^2 \theta_W(M_W) = 0.215 \pm 0.014$

smaller than required for SUSY unification

Marciano, Senjanović:

"A very large top quark mass would increase ρ ..."

See-saw: 3 types

• Type I: add a fermionic singlet ν^c $\langle \Delta^c \rangle \Rightarrow \nu^c$ gets a Majorana mass $\sim M_R$ EW breaking: Dirac mass m_D

$$\left(\begin{array}{cc} 0 & m_D \\ m_D & M_R \end{array}\right) \quad \rightarrow \quad m_\nu \sim \frac{m_D^2}{M_R} \sim \frac{M_W^2}{M_R}$$

• Type II: add a left-handed triplet of Higgs from $M\Phi^T\Delta\Phi + M_{\Delta}^2\Delta^{\dagger}\Delta$ with $M \sim M_{\Delta} \sim M_R$:

$$\langle \Delta \rangle \sim \frac{\langle \Phi \rangle^2 M}{M_{\Delta}^2} \sim \frac{M_W^2}{M_R}$$

Mass for ν from $L^T \tau_2 \langle \Delta \rangle I$

• Type III: add a fermionic triplet N^c Works for non-SUSY SU(5) unification

Bajc, Senjanovic 2006 - 2007

Dorsner, Fileviez-Perez, 2006-2007

In SO(10): fields for type I and type II are in the spectrum if the breaking goes through a group containing $U(1)_{B-L}$

Pati-Salam fourth color
$$SO(10)$$
:
 $U = \begin{pmatrix} u \\ u \\ u \\ \nu \end{pmatrix} D = \begin{pmatrix} d \\ d \\ d \\ e \end{pmatrix} \dots \Psi = \begin{pmatrix} U \\ D \\ D^{c} \\ U^{c} \end{pmatrix}$

- All fermions in one (spinorial) representation
- Couplings

$$\begin{split} \Psi C \Gamma^{a} \Psi H_{a} & 10 \\ \Psi C \Gamma^{a} \Gamma^{b} \Gamma^{c} \Psi D_{abc} & 120 \quad (antisym.) \\ \Psi C \Gamma^{a} \Gamma^{b} \Gamma^{c} \Gamma^{d} \Gamma^{e} \Psi \overline{\Sigma}_{abcd} & \overline{126} \end{split}$$

$SU(4)_C \times SU(2)_L \times SU(2)_R$ decomposition

$$H_{10} = (6,1,1) + (1,2,2)$$

$$D_{120} = (\overline{10},1,1) + (10,1,1) + (6,3,1) + (6,1,3)$$

$$+(1,2,2) + (15,2,2)$$

$$\overline{\Sigma}_{\overline{126}} = (10,1,3) + (\overline{10},3,1) + (6,1,1) + (15,2,2)$$

- $\overline{126}$ can give see-saw of type I and type II
- (15, 2, 2) in $\overline{126}$ contains a SM Higgs doublet

is $\overline{126}$ enough for all fermion masses?

no...

Fermion mass relations

One doublet is not enough:

Lazarides, Shafi, Wetterich 1981

Clark, Kuo, Nakagawa 1982

$$M_U = y_{10} \langle 1, 2, 2, \rangle_{10}^u + y_{126} \langle 15, 2, 2, \rangle_{126}^u$$

$$M_D = y_{10} \langle 1, 2, 2, \rangle_{10}^d + y_{126} \langle 15, 2, 2, \rangle_{126}^d$$

$$M_E = y_{10} \langle 1, 2, 2, \rangle_{10}^d - 3y_{126} \langle 15, 2, 2, \rangle_{126}^d$$

- only 10: $m_d = m_\ell$ at the GUT scale, for all generations
- only 126: $3m_d = m_\ell$
- 126 is required for neutrino mass –but what else ?
 - is there a difference between choosing 10 or 120 ?

Non SUSY: 126 + 10

Bajc, A.M., Senjanović, Vissani, 2005

$$M_U = y_{10} \langle 1, 2, 2, \rangle_{10}^u + y_{126} \langle 15, 2, 2, \rangle_{126}^u$$

$$M_D = y_{10} \langle 1, 2, 2, \rangle_{10}^d + y_{126} \langle 15, 2, 2, \rangle_{126}^d$$

$$M_E = y_{10} \langle 1, 2, 2, \rangle_{10}^d - 3y_{126} \langle 15, 2, 2, \rangle_{126}^d$$

$$M_{\nu_D} = y_{10} \langle 1, 2, 2, \rangle_{10}^u - 3y_{126} \langle 15, 2, 2, \rangle_{126}^u$$

take 2nd and 3rd generations only, approx. $\theta_q = V_{cb} = 0$

$$\frac{\langle 1, 2, 2, \rangle_{10}^u}{\langle 1, 2, 2, \rangle_{10}^d} = \frac{m_c(m_\tau - m_b) - m_t(m_\mu - m_s)}{m_s m_\tau - m_\mu m_b} \sim \frac{m_t}{m_b}$$

• real 10:
$$m_t = m_b$$

• need a complex 10 –PQ symmetry \rightarrow axion as Dark matter

SUSY or not: 126 + 10

take 2nd. and 3rd. generations only with $\theta_D=0$, $m_s=m_\mu=0$

$$M_N \propto \left(\begin{array}{cc} 0 & 0 \\ 0 & m_b - m_\tau \end{array} \right)$$

unless $m_b = m_{\tau}$, neutrino mixing vanishes

large $\theta_{atm} \leftrightarrow b - \tau$ unification

Bajc, Vissani, Senjanović 2002

Add more generations, detailed analysis:

- result on θ_{atm} still true
- large 1-3 leptonic mixing angle

Matsuda, Koide, Fukuyama, Nishiura, 2002

Goh, Mohapatra, Ng, 2003

Non-SUSY: 126 + 120

$$M_{U} = y_{120} \langle 1, 2, 2, \rangle_{120}^{u} + y_{120} \langle 15, 2, 2, \rangle_{120}^{u} + y_{126} \langle 15, 2, 2, \rangle_{126}^{u}$$

$$M_{D} = y_{120} \langle 1, 2, 2, \rangle_{120}^{d} + y_{120} \langle 15, 2, 2, \rangle_{120}^{d} + y_{126} \langle 15, 2, 2, \rangle_{126}^{d}$$

$$M_{E} = y_{120} \langle 1, 2, 2, \rangle_{120}^{d} - 3y_{120} \langle 15, 2, 2, \rangle_{120}^{d} - 3y_{126} \langle 15, 2, 2, \rangle_{126}^{d}$$

$$M_{\nu_{D}} = y_{120} \langle 1, 2, 2, \rangle_{10}^{u} - 3y_{120} \langle 15, 2, 2, \rangle_{10}^{u} - 3y_{126} \langle 15, 2, 2, \rangle_{126}^{u}$$

- real 120: again $m_t = m_b$
- complex 120: interesting relations between masses and mixings

SUSY or not: 126 + 120

Bajc, A.M., Senjanović, Vissani, 2005

Defining some small ratios: $\epsilon_f = m_2^f / m_3^f$, predictions are

• neutrino masses

$$\frac{m_3^2 - m_2^2}{m_3^2 + m_2^2} = \frac{\cos 2\theta_A}{1 - \sin^2 2\theta_A/2}$$

- large θ_A gives degenerate neutirnos

• quark masses relation at the GUT scale $m_{\tau} \sim 3m_b + O(\epsilon)$

- wrong for SUSY

- quark mixing $|V_{cb}| \sim \cos 2\theta_A \frac{m_s}{m_b} + O(\epsilon^2)$
 - large neutrino mixing implies small quark mixing

Choice in SUSY theories

- include the 10 + 126 combination
- get a connection θ_A with $b \tau$ unification at GUT scale
- get θ_{13} close to experimental limit

but the light Higgs must be a combination of these two fields

Enter 210

How to have both $\langle (1,2,2)_{10} \rangle$ and $\langle (15,2,2)_{126} \rangle \neq 0$?

$$\Phi_{210} = (15, 1, 1) + (1, 1, 1) + (15, 1, 3) + (15, 3, 1) + (6, 2, 2) + (10, 2, 2) + (\overline{10}, 2, 2)$$

Allows for:

$$W = ... + \overline{\Sigma}_{126} H_{10} \Phi_{210} + ...$$

 $\langle (15, 1, 1) \rangle$ breaks P-S symmetry and mixes doublets

 $(15, 2, 2) (1, 2, 2) \langle (15, 1, 1) \rangle$

 \rightarrow light doublets are combinations of those in Σ_{126} and H_{10} .

Babu, Mohapatra, 1993

But in addition, Φ_{210} can

- induce $\langle \Delta \rangle$ via couplings $(10, 3, 1)_{126} (1, 2, 2)_{10} (\overline{10}, 2, 2)_{210}$
- break $SO(10) \rightarrow P-S$ with parity-odd singlet $(1, 1, 1)_{210}$
- break P-S \rightarrow L-R with $(15, 1, 1)_{210}$

 $\Sigma, \overline{\Sigma}$ alone are not sufficient to break SO(10) – too simple superpotential

$$W = M \Sigma \overline{\Sigma}$$

Need extra fields: Φ_{210} is best candidate !

Clark, Kuo, Nakagawa, 1982; Aulakh, Mohapatra, 1983

Aulakh, Bajc, A.M., Senjanović, Vissani 2003

Other possibilities:

54 + 45 rep: need both - and cannot give vev to $(15, 2, 2)_{\overline{\Sigma}}$ Non-renormalizable terms with 16 rep: no R-parity conservation

Minimal Model

 $\Psi_{16}, H_{10}, \Sigma_{126}, \overline{\Sigma}_{\overline{1}26}, \Phi_{210}$

 $W_{H} = m_{\Phi} \Phi^{2} + m_{\Sigma} \Sigma \overline{\Sigma} + \lambda \Phi^{3} + \eta \Phi \Sigma \overline{\Sigma} + m_{H} H^{2} + \Phi H (\alpha \Sigma + \bar{\alpha} \overline{\Sigma})$ + $y_{10} \Psi C \Gamma \Psi H + y_{126} \Psi C \Gamma^{5} \Psi \overline{\Sigma}$

- 26 real parameters: same as MSSM
- rich enough Yukawa structure for realistic fermion spectrum
- both type I and type II see-saw
 - possibility of connecting large θ_A with small quark mixings
 - symmetry broken to the MSM + R-parity
 - * stable LSP

R-parity in SO(10)

R-parity \equiv Matter parity $= (-1)^{3(B-L)}$

Mohapatra, 1986

SO(10) has a Z_4 center:

$\mathbf{16} ightarrow i\mathbf{16}, \quad \mathbf{10} ightarrow -\mathbf{10},$

 $210 \rightarrow 210, \quad 126 \rightarrow -126, \quad \overline{126} \rightarrow -\overline{126}$

Under M, **16** is odd, rest even

 $M \in Z_4 \Rightarrow$ R-parity is in SO(10)

Can be shown: **R-parity** exact at all energies – survives SUSY breaking

Aulakh, A.M., Rašin, Senjanović, 1998

see-saw + SUSY \Rightarrow R-parity

Breaking SO(10)

$$\Phi \equiv \mathbf{210} = (15, 1, 1) + (1, 1, 1) + (15, 1, 3) + (15, 3, 1) + (6, 2, 2) + (10, 2, 2) + (\overline{10}, 2, 2) \Sigma \equiv \mathbf{126} = (\overline{10}, 1, 3) + (10, 3, 1) + (6, 1, 1) + (15, 2, 2) \overline{\Sigma} \equiv \overline{\mathbf{126}} = (10, 1, 3) + (\overline{10}, 3, 1) + (6, 1, 1) + (15, 2, 2)$$

SM singlets are allowed to get a vev

- Find the symmetry breaking conditions
- Calculate masses for all states
- Find the composition of the Higgs doublet

Fukuyama et. al 2004

Aulakh, Girdhar, 2004

Bajc, A.M., Senjanović, Vissani, 2004

An overconstrained model

Fine tune m_H : only 8 parameters left in the Higgs sector:

$$m, \alpha, \overline{\alpha}, |\lambda|, |\eta|, \phi = \arg(\lambda) = -\arg(\eta), x = \operatorname{Re}(x) + i\operatorname{Im}(x)$$

Vevs and masses of all states are

$$\sim rac{m}{\lambda} f(x)$$
 $rac{m}{\sqrt{\lambda\eta}} f(x)$

– variation with parameters quite smooth, with \boldsymbol{x} non trivial

see Aulakh, 2005

Masses $Log[M_i/10^{16}]$ of all states for large and small x

Fermion mass fitting

• The light Higgs is a combination no longer arbitrary

 $H_{u,d} = r_{u,d}^{10} H_{u,d}^{10} + r_{u,d}^{\overline{126}} H_{u,d}^{\overline{126}} + r_{u,d}^{126} H_{u,d}^{126} + r_{u,d}^{210} H_{u,d}^{210}$

with $r_{u,d}^{\mathbf{I}} = v \sin \beta N_{u,d} \xi_{u,d}^{\mathbf{I}}$ known functions of the parameters.

• Assume for example type II see-saw

$$m_{\nu} = y_{126} v_{\Delta} \quad v_{\Delta} = \frac{(\alpha r_u^{10} + \sqrt{6} \eta r_u^{126}) r_u^{210}}{m_{\Delta}}$$

– neutrino mass depends on the same parameters

Type II in trouble

Some relations among fermion masses depend only on x

$$M_u = \frac{N_u}{N_d} \tan \beta \times [M_d + \xi(x)(M_d - M_e)]$$

Define the ratio $R(x) = |1 + 1/\xi(x)|$

 \Rightarrow then R(x) > 1 from trace identities

Write type II mass as:

$$m_{II} = \frac{v^2}{M_x} \times \frac{\sin^2 \beta}{\cos \beta} \times \alpha \sqrt{\frac{|\lambda|}{|\eta|}} \times \frac{M_d - M_e}{v} \times \frac{N_u^2}{N_d} \xi(x)$$

$$\Rightarrow \text{ then } \xi(x) \text{ must give a } 10^2 - 10^3 \text{ factor}$$

General analysis (type I and II)

Aulakh, Garg, Ghirdaar, 2005-2006

Bertolini, Frigerio, Malinsky, 2005-2006

Mohapatra, Goh, Ng, Dutta Mimura...

Babu, Macesanu

Wang, Yang

- Do the compete fit with all the fermion masses and all parameters
- Parameter space for type I and type II getting smaller
- Include unification constraints, threshold effects
 - even worse

too small neutrino mass

What to do

Aulakh, 2005-2007

Use the maximal Yukawa sector: add a 120

 $D_{120} = (\overline{10}, 1, 1) + (10, 1, 1) + (6, 3, 1) + (6, 1, 3) + (1, 2, 2) + (15, 2, 2)$

(another 10 or 126 cannot help

- No SM singlets: symmetry breaking is the same
- Antisymmetric: only 3 complex Yukawa couplings more
- Two doublets mix through:

 $c_1 D_{120} H_{10} \Phi_{210} + c_2 D_{120} \Sigma_{126} \Phi_{210} + c_3 D_{120} \overline{\Sigma}_{126} \Phi_{210}$

• More parameters in the superpotential: 26 + 15 = 41 $m_D, \lambda_D, c_1, c_2, c_3, y_{120}$

Or: change the Higgs sector

Alternative model: S = 54 and A = 45 instead of 210

Aulakh, Bajc, Melfo, Rasin, Senjanović, 2001

$$W = m_H H^2 + m_S S^2 + m_A A^2 + m_\Sigma \Sigma \overline{\Sigma} + \eta A \Sigma \overline{\Sigma} + \lambda_H S^2 + \lambda_S S^3 + \lambda_A A^2 S + \lambda_\Sigma \Sigma^2 S + \overline{\lambda}_\Sigma \overline{\Sigma}^2 S$$

- 29 real parametrs
- see-saw of type I and II
- 10 + 126 are there but...
 - they do not mix -light Higgs is only the 10

wrong fermion masses

Yukawa sector has to be maximal in this model

54 + 45 with added 120

 $c_1 D_{120} H_{10} A_{45} + c_2 D_{120} \Sigma_{126} A_{45} + c_3 D_{120} \overline{\Sigma}_{126} A_{45}$

Compare with the (already not !) minimal model

- once Yukawa sector is maximal, 46 parameters
- smaller representations
- \Rightarrow find symmetry breaking and mass spectrum

Ramírez, A.M, in preparation

Type II neutrino masses controlled

RGE in the MSSM at one loop

$$\ln \frac{M_X}{M_W} = \left(\frac{1}{\alpha_j} - \frac{1}{\alpha_i}\right) \frac{2\pi}{b_i - b_j}$$

Suppose the Δ_L triplet has a mass $< M_X$

$$\langle \Delta \rangle \propto \frac{1}{m_{\Delta}} , \quad m_{\nu} = y_{126} \langle \Delta \rangle$$

other fields could cancel its contribution to the running

Goh, Mohapatra, Nasri, 2004

No need for new fields: already present

$SU(3) \times SU(2) \times U(1)$	δb_1	δb_2	δb_3
$(1,3;\pm 1)$ Δ	9/5	2	0
$(6,1;\pm 1/3)$	2/5	0	5/2
$(1,2;\pm 1/2)$	3/10	1/2	0
Total	5/2	5/2	5/2

Type II scale undetermined

- enough free parameters to tune their masses at an intermediate scale
- triplet can be as light as desired without afecting one-loop running
- two-loop effects are negligible

Allowed values of $\log(m_{susy}/GeV)$ as a function of $\log(M_{\Delta}/GeV)$ for two-loop unification. M_{Δ} is the common mass scale of the left-handed triplet, color sextet and SM-like doublet.

Summary

- SO(10): ideal framework for small neutrino masses
- Models with a non-maximal Yukawa sector can provide connections between fermion masses and mixings
- Minimal SUSY GUT has the smallest number of parameters and
 - * Realistic charged fermion spectrum
 - * R-parity exact at all energies
 - * Small ν mass through type I and type II see-saw
 - * B-S-V connection large $\theta_{atm} \leftrightarrow b \tau$ unification
 - * Large 1-3 mixing $|U_{13}| \sim .15$ -close to exp. limit
- However lack of intermediate scales gives too small neutrino mass

- Next-to minimal SUSY GUTs do not seem to be predictive
 - * but work is in progress...