Physics of the B-Factories Book

CKM sides: $V_{t d}$ and $V_{t s}$

Kevin Flood

California Institute of Technology

Chapter Outline

- Basic plan of the chapter is to describe extraction of $|V+d / V t s|$ from two sets of experimental results:
- Δm_{d} and Δm_{s}
- Forward reference(s) to mixing chapter
- HFAG plot of Δm_{d} results is currently included here
- Need Tevatron Δm_{s} result, and a few other inputs
- Agree on values/uncertainties with (most?) global fits folks
- $B->X_{s, d} \gamma$ branching fractions
- Babar has done two correlated analyses (same dataset)
- Exclusive $\mathrm{B}->\mathrm{K}^{\star} \gamma$ and B ->rho/omega γ
- Semi-inclusive $B->X_{s} \gamma$ and $B->X_{d} \gamma$
- One Belle exclusive modes result
- PRL 101, 111801 (2008)
- Give Vtd/Vts for all three results separately
- Final average will use Babar semi-incl plus Belle excl

Editors:

Kevin Flood (BMBNR)
Tobias Hurth (theory)
The CKM matrix elements $V_{\text {td }}$ and $V_{\text {tx }}$ are funda The CKM mantrix elements $V_{\text {td }}$ and $V_{\text {te }}$ are funda menn oully be determined experimentally using $\Delta F=1$ loop-medinted B or K rare decays, or $\Delta F=2$ box diagramen proceses involving top quarks. Mensurement of the single top quark production cross-section allows for a mode--independent direct determination of $V_{t b}$, but the magnitudiss of $V_{\text {ud }}$ and $V_{b x}$ cannot be similarly extracted from troe-jevel decays. Derwition of $V_{t d}$ and $V_{t x}$ from the experimental obsarvibles necesarily ad ines thougr the FCN obecrnbles used, c.g- from $B_{d, t}$ mixing, $B \rightarrow X(s, d) \gamma$, or e in the knon seetor, may reecive new physie conerinusons from unrelnted sourcss 1 ludependent deterninntion of the magnit with $V_{\text {td }}$ and V_{t} from several different sources, nlong with $V_{b b}$ from sin gie top acas section mesercemens, enn provide a robus model-independent check of the uniturity of the CKM mntrix or, convendy, In

In the past few years, the experimental and lattice QCD inputs mecessary to caleulate $V_{\text {td }}$ and $V_{l a}$ to good precisson have beeome avnilable. The B-Fhetorics have contributed mensurements of Δm_{d}, the mnss difference between B° and D, and brunching fractions from the inclu$B \rightarrow X(s, d) \gamma$, while the Tevntron collaborations have $B \rightarrow X(s, d) \gamma$, while the Tevitron collnborntions $\overline{B_{n}}$, mensured Δm_{x}, the mnss difference between B_{n} and \bar{B}_{x}, to sula-pereent precision. Tbese results have been matched by procisur in the additival parameten which are requined procisona in the additional parametess which are required to extract $V_{\text {de }}$ and V_{tx} from the experimental results. $A t$ bet both Bubr so mifice wone then the experimental inputs wis so significantly wonse than the experimental procision the time to time
Equation ?? relates Δm d to V_{ld} [ndd cite]:
(eq 1 from Belle hep-ex/0211085 goes here
where $m_{e_{1}} m_{B}$ and mw are respectively the top quark, B° and W mnewer; G_{F} is the Fermi constant; η_{k} is a QCD carrection [ndd cite); S is a function of m_{2}^{2} / m_{W}^{2} [ndd cite] f_{B} is the B-meson decay constant; and B_{B} is the B-meson bag parnmeter. Although most of these parnmeters are well-charneterived, an unawoidnble dependence on lattice QCD enters in the product $\dot{B}_{B} f_{B}$.

In order to extruct $V_{\text {ed }}$ using Eq. ??, we ndopt the lntest combimation of unquenched lattiee QCD results avnilable from "www.latticenvernges.org" [add cite], who re-
port $f_{b} \sqrt{B_{B}}=216 \pm 15$. This result is obtnined by combining the average decay constant f_{b} obtnined from the MILC and $H P Q C D$ eollnhorations, along with the $H P Q C D$ determination of the hag parameter \dot{B}_{R}, which minimives the total uncertninty with respect to tnking the two parameters separately. Using the seven B-F Hey Filt Aver in Fig 1, which are avernged by in fing $\Delta m_{d}=0.508 \pm 0.005 \mathrm{pss}^{-1}$, we find $V_{\mathrm{dd}}=x I x \pm I J x$.

Fig. 1. Mosurromerts and HFAG avorngod Δ ma from Babar and Bolle.

The uneertninty in $V_{\text {td }}$ induced by the uncertainty in $f_{6} \sqrt{B_{B}}$ can be reduced by rewriting this factor as $f_{b} \sqrt{\tilde{B}_{B}}=f_{s} \sqrt{\tilde{B}_{B^{s}}} / \xi$, where $\xi=f_{s} \sqrt{\tilde{B}_{B} s} / f_{b} \sqrt{\tilde{B}_{B}}$. The inctor \& can be more aceurately determined in lattice QCD caleulationsthan its individunl terms beanuse of the inellssion of $f_{s} \sqrt{B_{B} s}$, which is obtnined directly at the physicnl strange quark mats rather than by extrupolntion to the uneertninties in the ratio. Using the vnlues $\xi=1.243 \pm$ uneertninties in the ratio. Using the vnlues $\xi=1.243 \pm$
0.023 nud $f_{s} \sqrt{\tilde{B}_{B s} s}=275 \pm 13$, we find $V_{\mathrm{dd}}=x x x \pm x x x$, a reduction of $\sim x I \%$ in the uncertninty relntive to the result ahove besed solely on $f_{b} \sqrt{B_{B}}$. The Inttioe parnmeter uneertninties can be further reduced by taking the ratio $V_{\mathrm{td}} / V_{\text {tex }}$, which directly uses ξ^{-1}, and ineorporating the combined CDF/DO result for $\Delta m_{x}=17.78 \pm 0.12 \mathrm{ps}^{-1}$
[cite] and an expreasion for V_{s} annlogous to Eq ? ??, and we find $V_{\text {td }} / V_{\text {ta }}=x x x \pm x I x$
14.2.1 $B \rightarrow X(s, d) \gamma$
$\rho, \omega \gamma$
Semi-inclusive Babar BF results: $B \rightarrow X_{s, d}$
14.2.2 Surnmary

Recapitulntion
Future prospects.

$V+d, V+d / V+s$ from Δm

- Final result is ratio $\mathrm{V} t \mathrm{~d} / \mathrm{V} t s$ using both $\mathrm{B}(\mathrm{d}, \mathrm{s})$ mass difference and $B->X(s, d) g a m m a$, but want also to discuss Vtd from Δm alone and would like to have agreement with others on values of inputs

$$
\begin{aligned}
\Delta m_{d} & =\frac{G_{F}^{2}}{6 \pi^{2}} f_{B}^{2} m_{B} m_{W}^{2} \eta_{t} S\left|V_{t b}^{*} V_{t d}\right|^{2} B_{B} \\
\frac{\Delta m_{s}}{\Delta m_{d}} & =\frac{m_{B_{s}}}{m_{B_{d}}} \frac{f_{B_{s}}^{2} B_{B_{s}}}{f_{B_{d}}^{2} B_{B_{d}}}\left|\frac{V_{t s}}{V_{t d}}\right|^{2}
\end{aligned}
$$

- Need a table of non-lattice inputs agreed upon by all
- m_{t}, m_{w}, etc. do not seem controversial . . .
- Should be part of the book (perhaps an appendix?), but all needed inputs that can be trivially agreed upon should be memorialized soon
- This task falls most naturally to global fit editors

Vtd/Vts from Exclusive Radiative Penguins

- Babar and Belle use similar methods to extract $\mathrm{V}+d / \mathrm{V} t s$ from the exclusive $\mathrm{B}->(\rho / \omega) \gamma$ and $\mathrm{K}^{*} \gamma \mathrm{BFs}$
P. Ball, G.W. Jones, and R. Zwicky, J. High Energy Phys. 04 (2006) 046; P. Ball, G.W. Jones, and R. Zwicky, Phys. Rev. D 75, 054004 (2007).

$$
R_{\exp } \equiv \frac{\overline{\mathcal{B}}(B \rightarrow(\rho, \omega) \gamma)}{\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)}
$$

where $\overline{\mathcal{B}}(B \rightarrow(\rho, \omega) \gamma)$ is defined as the CP-average $\frac{1}{2}[\mathcal{B}(B \rightarrow(\rho, \omega) \gamma)+\mathcal{B}(\bar{B} \rightarrow(\bar{\rho}, \omega) \gamma)]$ of

$$
\mathcal{B}(B \rightarrow(\rho, \omega) \gamma)=\frac{1}{2}\left\{\mathcal{B}\left(B^{+} \rightarrow \rho^{+} \gamma\right)+\frac{\tau_{B^{+}}}{\tau_{B^{0}}}\left[\mathcal{B}\left(B^{0} \rightarrow \rho^{0} \gamma\right)+\mathcal{B}\left(B^{0} \rightarrow \omega \gamma\right)\right]\right\}
$$

and $\overline{\mathcal{B}}\left(B \rightarrow K^{*} \gamma\right)$ is the isospin- and CP-averaged branching ratio of the $B \rightarrow K^{*} \gamma$

Vtd/Vts from Exclusive Radiative Penguins

Within QCD factorisation, and using the notations of Ref. [6], the amplitude for $B \rightarrow$ $V \gamma$ can be written as

$$
A(\bar{B} \rightarrow V \gamma)=\frac{G_{F}}{\sqrt{2}}\left[\lambda_{u} a_{7}^{u}(V \gamma)+\lambda_{c} a_{7}^{c}(V \gamma)\right]\langle V \gamma| Q_{7}|\bar{B}\rangle
$$

where λ_{q} are products of CKM matrix elements and the factorisation coefficients $a_{7}^{u, c}$ consist of Wilson coefficients and non-factorisable corrections from hard scattering and annihilation; explicit expressions can be found in Ref. [6]. $a_{7}^{u, c}$ depends in particular on the form factor T_{1} and the twist-2 DA $\phi_{V ; \perp}$. The theoretical expression for R is then given by

$$
\begin{align*}
R_{\mathrm{th}}= & \left|\frac{V_{t d}}{V_{t s}}\right|^{2} \frac{1}{\xi^{2}}\left(\frac{1-m_{\rho}^{2} / m_{B}^{2}}{1-m_{K^{*}}^{2} / m_{B}^{2}}\right)^{3}\left|\frac{a_{7}^{c}(\rho \gamma)}{a_{7}^{c}\left(K^{*} \gamma\right)}\right|^{2}\left(1+\operatorname{Re}\left(\delta a_{ \pm}+\delta a_{0}\right)\left[\frac{R_{b}^{2}-R_{b} \cos \gamma}{1-2 R_{b} \cos \gamma+R_{b}^{2}}\right]\right. \\
& \left.+\frac{1}{2}\left(\left|\delta a_{ \pm}\right|^{2}+\left|\delta a_{0}\right|^{2}\right)\left\{\frac{R_{b}^{2}}{1-2 R_{b} \cos \gamma+R_{b}^{2}}\right\}\right) \tag{19}
\end{align*}
$$

with $\delta a_{0, \pm}=a_{7}^{u}\left(\rho^{0, \pm} \gamma\right) / a_{7}^{c}\left(\rho^{0, \pm} \gamma\right)-1$. Here, γ is one angle of the CKM unitarity triangle and R_{b} one of its sides:

$$
R_{b}=\left(1-\frac{\lambda^{2}}{2}\right) \frac{1}{\lambda}\left|\frac{V_{u b}}{V_{c b}}\right| .
$$

Vtd/Vts from Semi-Incl Radiative Penguins

- Method for extracting $\mathrm{V} t d / \mathrm{V} t s$ from inclusive $B->X(s, d)$ gamma

$$
R(d \gamma / s \gamma)=\frac{\left|\xi_{t}\right|^{2}}{\left|\lambda_{t}\right|^{2}}+\frac{D_{u}}{D_{t}} \frac{\left|\xi_{u}\right|^{2}}{\left|\lambda_{t}\right|^{2}}+\frac{D_{r}}{D_{t}} \frac{R e\left(\xi_{t}^{*} \xi_{u}\right)}{\left|\lambda_{t}\right|^{2}} \left\lvert\, \begin{aligned}
& \text { Ali et al., Phys.Lett. } \\
& \text { B429, 87 (1998) } \\
& \xi_{\mathrm{q}}=\mathrm{V}_{\mathrm{qb}} \mathrm{~V}_{\mathrm{qd}}^{*} ; \lambda_{\mathrm{q}}=\mathrm{V}_{\mathrm{qb}} \mathrm{~V}_{\mathrm{qs}}{ }^{*}
\end{aligned}\right.
$$

D functions contain contributions from Wilson Coeffs, etc.
Evaluated numerically in paper

Vtd/Vts from Semi-Incl Radiative Penguins

- Ali et al rewrite R as

$$
R=\lambda^{2}\left[1+\lambda^{2}(1-2 \bar{\rho})\right]\left[(1-\bar{\rho})^{2}+\bar{\eta}^{2}+\frac{D_{u}}{D_{t}}\left(\bar{\rho}^{2}+\bar{\eta}^{2}\right)+\frac{D_{r}}{D_{t}}\left(\bar{\rho}(1-\bar{\rho})-\bar{\eta}^{2}\right)\right]
$$

- To remove dependence on earlier estimates of $V+d / V t s$, rewrite as a function of $\mathrm{V} t \mathrm{~d} / \mathrm{V} t s$ and φ_{2}, and after some algebra end up with

$$
\begin{aligned}
& R=\kappa_{1} X^{2}+\kappa_{2} X+\kappa_{3} \\
\kappa_{1}= & 1+\frac{D_{u}}{D_{t}}\left(1-2 \lambda^{2} \cos ^{2} \beta\right)-\frac{D_{r}}{D_{t}}\left(\lambda^{2} \cos ^{2} \beta+1\right) \\
\kappa_{2}= & \lambda \cos \beta\left[\frac{D_{u}}{D_{t}}\left(3 \lambda^{2}-2\right)+\frac{D_{r}}{D_{t}}\left(1+\frac{\lambda^{2}}{2}\right)\right] \\
\kappa_{3}= & \lambda^{2} \frac{D_{u}}{D_{t}}\left(1-\lambda^{2}\right) .
\end{aligned}
$$

Summary

- Draft of full text for Vtd,Vts from mass difference committed a few days ago
- Clean up, then commit final draft in near future
- Will use central values and uncertainties for lattice inputs from "latticeaverages.org", which UT and CKM global fit editors have also agreed to use
- Formalism for extracting Vtd/Vts from radiative penguins is well-defined, but needs updating for latest values and uncertainties of several input parameters
- CKM, UT, Scan? I'll probably go with UT ...
- Would like to see non-controversial physics inputs globally defined and put into a table somewhere in the book
- Perhaps in an appendix?
- Theory editor has agreed to review whatever I write ©)
- Belle (TB) has also agreed to review the text
- Final word will be comparison of mass diff vs radpen ratios 4th Physics of the B-Factories Workshop Kevin Flood 1 Jul 2011

