Optimisation des Capteurs CMOS pour le Dét. de Vertex

Marc Winter (IPHC/Strasbourg)

pour DAPNIA/Saclay, LPSC/Grenoble, LPC/Clermont-F., DESY, Uni. Hamburg & IPHC/Strasbourg, coll. EUDET/JRA-1

contributions de Uni. Frankfurt, GSI-Darmstadt, coll. STAR (LBNL, BNL)

Progrès récents dans l'évaluation des performances génériques :

⇔ Résolution spatiale ⇔ Traces inclinées \Rightarrow Perfo. de capteurs minces

- Progrès récents de la R&D de capteurs rapides : *⇔* matrices à sorties discriminées $\Rightarrow \mu circuits de Ø$ *⇔* prochaines étapes *⇔* ADC compacts • Intégration système : - Amincissement *⇔ Concept d'échelle* • Avancées des projets annexes : ☆ Télescope EUDET *⇒* Télescope TAPI
- Résumé

- 2 beam telescopes used at CERN-SPS:
- ← New pixel telescope : T.A.P.I.
 - ♦ 3 or 4 MIMOSA-17 or/and -18 sensors (more in future)
 - Commissionning in June '07 at DESY
 - ♦ Real data taking in Sep. & Nov. '07 at CERN-SPS
 - $\diamond~$ R.o. freq. $\sim~$ 10 (M-18) or 25 frames/s (M-17)
 - ♦ Running in front of Si-strip telescope ▷▷▷▷▷▷▷

Several studies at CERN-SPS:

- ← performances of sensors exposed to non-ionising radiation
- ightarrow comparison of "14 μm " to "20 μm " epitaxy

Vertexing Applications of MIMOSA Chips: Short & Mid-Term

Vertex Detector upgrade for STAR expt at RHIC

- ightarrow 2 cylindral layers : \sim 1600 cm 2
- $m \simeq \gtrsim$ 160 million pixels (\leq 30 μm pitch)
- \Rightarrow 3 steps :
- $\triangleright \triangleright$ 2007: telescope (3 MIMO-14) \rightarrow BG meast, no pick-up !
 - \diamond 2008/09: digital outputs without arnothing (\leq 640 μs)
 - \diamond 2010/11: digital outputs with integrated Ø (\leq 200 μs)

Beam telescope (FP6 project EUDET)

- ightarrow provide \lesssim 1 μm resolution on 3 GeV e $^-$ beam (DESY)

 \Rightarrow 2 steps :

- ▷▷ 2007: analog outputs
 - \rightarrow telescope commissionned & running (\lesssim 100 tracks / frame)
 - ightarrow used by non JRA-1 members at SPS (e.g. SILC)
 - \diamond 2008/09: digital outputs with integ. arnothing (\sim 100 μs)

Performances...

• This impressive plot is showing the pretty mature development stage of the tracking software.

CERN large multiplicity data taken two weeks ago

Single point resolution versus pixel pitch:

clusters reconstructed with eta-function,
 exploiting charge sharing between pixels

 $\Rightarrow \sigma_{f sp} \sim {f 1.5} \ \mu{f m}$ (20 μm pitch) $ightarrow > \lesssim {f 3} \ \mu{f m}$ (40 μm pitch)

obtained with signal charge encoded on 12 bits

 \Rightarrow encoding charge on 3–5 bits \Rightarrow $\sigma_{
m sp}$ \sim 2 μm (20 μm pitch)

ightarrow requirements: \lesssim 3–3.5 μm in inner layers (\sim 5 μm in outer layers)

Recent result obtained with very small pitch :

 \Rightarrow MIMOSA-18 : 512imes512 pixels with 10 μm pitch, analog output, S/N \sim 30

 \Rightarrow tested on Si-strip tele. at CERN-SPS (120 GeV π^-) in Nov. '07

- \Rightarrow single point resolution observed (prelim.) \lesssim 1 μm !!!
- \longleftrightarrow for EUDET telescope to allow \lesssim 1 μm on DUT surface with few GeV e^ beam

N. 1		
	\forall	100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100
- 42 4 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	12	
	나는	
	\triangleleft	
	- ch	
	<u> </u>	
	L.	
	_	
	\bigcirc	1 A 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5
	*	
1 235 28 -		#14. #225
NUMBER OF TAXABLE PARTY		
	ه هه مشاهد هم ا	

Motivation

- ⇔ simulate clusters from particules produced at shallow angle or from low e_{BS}^{\pm} (low p \rightarrow curling in ϕ)
- \Leftrightarrow collect cluster data at various angles \rightarrowtail data base
- ⇔ adapt signal processing µcircuits and cluster rec. algo. to inclined tracks : 2–3 seed pixels, large signal, large clusters, …

Measurements performed with TAPI at CERN-SPS

- \Rightarrow MIMOSA-17 (30 μm pitch, rad. tol. pixel), T $_{room}$
- \Rightarrow measure Q, S/N, σ_{sp} , σ_{θ} at θ = 0, 15, 30, 45, 60, 75, >80°
- ⇔ set-up data base for complete VD simulations (Lol)
- \Rightarrow model cluster characteristics vs p & θ for "fast" VD simul.
- work performed together with Lukazc Maczewski (Warsaw) (also: gyroscopic sensor support installed on DESY beam)

Requirements:

★ beamstrahlung (GuineaPig X 3):
$$\lesssim 10^3 e_{BS}^{\pm}/cm^2/25 \ \mu s \implies \lesssim 2.10^{12} e_{BS}^{\pm}/cm^2/yr$$

 \hookrightarrow O(100) kRad/yr - O(10¹¹) n_{eq}/cm²/yr (NIEL ~ 1/30)

* neutron gas: \lesssim 10 10 n $_{eq}$ /cm 2 /yr

Established ionising radiation tolerance (reminder): 1 MRad – $2 \cdot 10^{12} n_{eq}/cm^2$ – $10^{13} e_{10 MeV}^{-}/cm^2$ OK

Non-ionising radiation tolerance (Summer / Autumn 2007):

★ MIMOSA-18 irradiated with $\leq 10^{13}$ O(1 MeV) n/cm² (+ 100–200 kRad γ gas) **⇒** tested on ~ 120 GeV π⁻ beam (SPS) **▶ Preliminary results:** • T = -20°C • t_{r.0.} ~ 3 ms • cuts at 5N (seed) & 2N (crown)

Integration of Signal Processing

Inside Pixels and on Chip Periphery

- 2) Develop ILC sensors (mainly for inner layers) extrapolating from EUDET & STAR:
 - $\diamond\,$ increase row read-out frequency by \sim 50 %
 - replace discriminators with ADCs

High R.-O. Speed Architecture : 2nd Prototype = MIMOSA-16

MIMOSA-16 design features :

- AMS-0.35 OPTO translation of MIMOSA-8 $\hookrightarrow \sim$ 11–15 μm epitaxy instead of \lesssim 7 μm
- \bullet 32 // columns of 128 pixels (pitch: 25 μm)
- on-pixel CDS (DS at end of each column)
- 24 columns ended with discriminator
- 4 sub-arrays :

CMOS-VD

- S1 : like MIMOSA-8 (1.7x1.7 μm^2 diode)
- S2 : like MIMOSA-8 (2.4x2.4 μm^2 diode)
- S3 : S2 with ionising radiation tol. pixels
- S4 : with enhanced in-pixel amplification (against noise of read-out chain)

Tests of analog part ("20" & "14" μm epitaxy) :

- ullet sensors illuminated with 55 Fe source and F $_{r.o.}$ varied up to \gtrsim 150 MHz
- measurements of N(pixel), FPN (end of column), pedestal variation, CCE (3x3 pixel clusters) vs $F_{r.o.}$

M.i.p. detection with Si-stip telescope studied at CERN in Sept. '07 ightarrow characterisation of digital response :

- $ullet \pi^-$ beam of \sim 180 GeV/c
- measurements of SNR, det. efficiency, fake rate, cluster characteristics, spatial resolution vs discri. threshold

Pixel noise and charge collection efficiency ("20 μm epitaxy :

Chip#0 (old mezzanine board)

Columns 28-31

\Rightarrow Noise performance satisfactory (like MIMOSA-8 and -15)

- \Rightarrow CCE: very poor for S1 (1.7x1.7 μm^2) & poor for S2/S3 (2.4x2.4 μm^2)
- ightarrow already observed with MIMOSA-15 but more pronounced for "20 μm " option
- \hookrightarrow suspected origin: diffusion of P-well, reducing the N-well/epitaxy contact, supported by CCE of S4 (4.5x4.5 μm^2 diode)

4

MIMOSA-16 Beam Test Results (Digital Part)

CERN-SPS (\sim 180 GeV π^-) \rightarrow preliminary analysis results of S4 ("14 μm " epitaxy)

Read-out time \sim **50** μs (\sim 1/4 of max. freq. due to DAS limitations)

CMOS-VD

Major result \rightarrowtail at least one pixel architecture validated for next steps : S4 (SNR \sim 16)

Discri. Threshold	det. efficiency	fake rate	sgle pt resolution
4 m V	99.96 \pm 0.03 (stat) %	\sim 2 \cdot 10 $^{-4}$	\sim 4.8–5.0 μm
6 m V	99.88 \pm 0.05 (stat) %	$< 10^{-5}$	\sim 4.6 μm

Next steps :

- *Mid-term : EUDET, STAR* \rightarrow *real experimental conditions;* \sim *ILC VD outer layer requirements*
- Long-term full sensor prototyping : ILC (mainly inner layers), CBM

Integrated $\varnothing
ightarrow$ real scale sensors without ADC ($\sigma_{sp} \sim$ 4–6 μm) :

- * EUDET telescope (2008)
- * STAR-HFT (2010)
- **★ CBM-MVD** (≥ 2015)

Integrated 4-5 bit ADC replacing discriminators and increased read-out speed :

* prototype for ILC-VD (2008/09)

* read-out speed \rightarrow CBM-MVD (\geq 2015)

Several different ADC architectures under development at IN2P3 and DAPNIA

- ⇔ LPSC (Grenoble): Ampli + semi-flash (pipe-line) 5- and 4-bit ADC for a column pair
- ⇔ LPCC (Clermont) : flash 4+1.5-bit ADC for a column pair
- ⇒ DAPNIA (Saclay) : Ampli + SAR (4- and) 5-bit ADC

⇒ IPHC (Strasbourg) : SAR 4-bit and Wilkinson 4-bit ADCs

Lab	proto.	phase	bits	chan.	F _{r.o.} (MHz)	dim. (μm^2)	${\sf P}_{diss}^{stat}$	eff. bits	Problems
LPSC	ADC1	tested	5	8	15-25	43x1500	1.1 mW	4	Offset & N
	ADC2	tested	4	8	25	40x943	0.7 mW		
	ADC3	fab	5	16 ?	25	40x1400	0.7 mW (sim)		
LPCC	ADC1	tested	5.5	1	5(T)–10(S)	230x400	20 mW	2.5	P_{diss} & bits
	ADC2	fab	5.5	1	10	40x1100	1 mW		
DAPNIA	ADC1	tested	5	4	4	25x1000	0.3 mW	\gtrsim 2	Missing bits
	ADC2	fab	5	4	4	25x1000	0.3 mW		
IPHC	ADC1	under test	4	16	10	25x1385 (?)	\lesssim 0.3 mW		
	ADC2	under test	4	16	10	25x900	\lesssim 0.3 mW		

 \Rightarrow 1st mature ADC design expected to come out in 2008

 \Rightarrow Submission of 1st col. // pixel array proto equipped with ADCs in Autumn 2008 (?) \rightarrow with integ. \emptyset in 2009

Very Low power S&H+ pipelined ADC from LPSC

				0 : : :
	Fréq.	Dimension	Conso	10 -10 -10 -10 -10 -10 -10 -10 -10 -10 -
	(MHz)	(µm*µm)	(mW)	25dB
1 ^{er} Proto (2006)				-40
<i>Shita</i>	25	43*1500	1.04	-60
SDIIS			3.3V	-70 -70
2 ^{ème} proto (Jun 2007) 4 bits Double Sampling	25	40*900	0.72 3.3V	Normalized Frequency
3 ^{ème} proto (sep 2007) 5 bits	25	40*1400	0.69 simu	$- 10^{1} \underbrace{10^{1}}_{0} \underbrace{10^{1}}_{2000} \underbrace{10^{1}}_{2000} \underbrace{10^{1}}_{10} 10^{1$
Double sampling			2V	to be tested

- 1st chip (SUZE-01) with integrated Ø and output memories (no pixels) :
 - * 2 step, line by line, logic :
 - \diamond step-1 (inside blocks of 64 columns) : identify up to 6 series of \leq 4 neighbour pixels per line delivering signal > discriminator threshold
 - \diamond step-2 : read-out outcome of step-1 in all blocks and keep up to 9 series of \leq 4 neighbour pixels
 - * 4 output memories (512x16 bits) taken from AMS I.P. library
 - $\%\,{\rm surface}\sim {\rm 3.9}\times {\rm 3.6}\,{\rm mm}^2$
 - \hookrightarrow 10 keuros (funding via EUDET)

Status :

- ⋇ sent for fabrication end of July
- * back from foundry end of Sept. \rightarrow tests under preparation \Rightarrow test completion expected by end of year

Pixel characteristics (optimal charge coll. diode size ?):

- * pitch : 18.4 μm (compromise resolution/pixel layout)
- st diode surface : \sim 10–15 μm^2 to optimise charge coll. & gain
- * 128 columns ended with discriminator
- * 8 columns with analog output for test purposes
- * 9 sub-matrices of 64 rows : various pixel designs w/o ionising rad. tol. diode

 \Rightarrow active digital area : 128 x 576 pixels (\sim 25 mm²)

```
st read-out time \sim 100 \mu s
```

Testability :

 ※ JTAG + bias DAC → programmable chip steering
 ※ 2 additionnal DC voltages to emulate pixel's output for independent discriminator performance assessment
 ※ output frequency ≤ 40 MHz

Status :

 Submitted end of Oct. '07 (MP run) → tests will start in Feb.'08 Funding (~ 50 mm²): ~ 40 keuros (2/3 payed via EUDET)

Autumn 2008 : MIMOSA-22+ = Final EUDET Sensor * MIMOSA-22 complemented with \emptyset (SUZE-01) 1 or 2 sub-arrays (best pixel architectures of MIMOSA-22) Active surface : 1088 columns of 544/576 pixels (20.0 x 10/10.5 mm²) st Read-out time \sim 100 μs * Chip dimensions : \sim 20 x 12 mm² \triangleright Opportunity for an engineering run combining various chips (pixel+ADC ?): \sim 120 keuros for 6 diced and thinned wafers (\sim 60 % via EUDET) Devts performed in *//* : * June 2008 : submission of final STAR-HFT1 sensor $ightarrow
ightarrow
ightarrow
m 2 imes
m 2 \, cm^2$ * 400 kpix/sensor $* \leq 640 \ \mu s$ \hookrightarrow equip 2 or 3 sectors of 1 + 3 ladders (10 chips/ladder) * Autumn 2008 (?) : MIMOSA-16 with ADCs replacing discri. (24 columns of 128 pixels r.o. in //, with 4- or 5-bit ADC ending each col.)

Beyond 2008:

- **MIMOSA-22** with ADCs replacing discriminators \rightarrow outer layers (?) \rightarrow inner layers
- st increase r.o. frequency by \sim 50 % (new Ø & memory design) ightarrow inner layers

System Integration Studies

Thinning

Ladder design

• Power cycling

Data Flow

Thinning motivations and constraints :

- \Leftrightarrow thin sensors to \lesssim material budget of "mechanical support" (+ beampipe)
- ⇔ minimal thickness of CMOS sensors :

10–15 μm (metal layers and SiO $_2$) + 15 μm (T + epitaxy) + 5–10 μm (substrate) pprox 30–40 μm

- ⇔ thinned sensors should be "easy" to handle
- ⇔ thinning procedure should have high mechanical yield and preserve detection performances
- \Rightarrow CMOS technology fab. yield \rightarrow foster diced sensors (despite few 10⁻⁴ X₀ add. mat. budget / ladder)
- ⇔ thinning of individual sensors seems preferable to full wafer thinning : cheaper but same quality ?

Status of Thinning Studies and Ladder Prototyping (STAR)

Predominantly driven by STAR HFT project at LBNL

Thinning of MIMOSA-5 wafers :

CMOS-VD

- \Rightarrow 3 wafers thinned via LBNL to 50 \pm 5 μm
- ⇒ result satisfactory (after pre-dicing): sensors can be manipulated and mounted on support
 ⇒ 3 ladder prototypes fabricated at LBL (≥ 0.25 % X₀)
 → up to 9 sensors mounted on ladder and tested

Thinning of individual sensors to \sim 50 μm :

 \Rightarrow several chips of \sim 0.2 – 3.5 cm² (MIMOSA-5, -10, -14, -17, -18, -20, etc.) thinned individually via LBNL

- \Rightarrow recent result: MIMOSA-18 prototype thinned to 50 μm was successfuly tested with 55 Fe at IPHC
 - \rightarrowtail no change of performances (e.g. noise, gain, det.eff, ...) \rightarrowtail next slide

⇔ Plans : • replace present (thick) sensors (MIMOSA-17, -18) equipping telescopes (EUDET, TAPI, ...)

- equip STAR-HFT1 with thinned sensors (2008/09) \rightarrow 0.25 0.3 % X₀
- extend ladder devt to ILC Vertex Detector (LBNL-ILC team ?) \rightarrow goal \leq 0.2 % X₀

Thinning of AMS-0.35 engineering run reticles :

- ← Thinning performed by APTEK (S.F. bay) via LBNL (STAR coll.)
- \Rightarrow Thickness claimed by provider : 50 $\mu m
 ightarrow$ measured with IPHC bonding machine : \sim 50–70 μm
- \Rightarrow MIMOSA-18 (5.5×7.5 mm²) & -17 (8×9 mm²) mounted on PCB for tests \rightarrow keep them flat !

- \Rightarrow Tests with ⁵⁵ Fe source show no performance loss (noise, gain)
- \Rightarrow Tests of MIMOSA-18 mounted on TAPI with 120 GeV π^- at CERN-SPS (Nov. '07)
 - ightarrow no performance loss observed ightarrow $\epsilon_{
 m det}$ = 99.79 \pm 0.15 % (prelim.)

Preliminary conclusion : Thinning down to \sim 50 μm seems on a good track

Power cycling

- study performed with MIMOSA-5 at DESY
- \Rightarrow though MIMOSA-5 not at all adapted to power cycling, it was operated with \sim 1/8 duty cycle

 \Rightarrow duty cycle \lesssim 1/50 within reach with suited sensor design

Data flow:

- \Rightarrow data flow / layer assessed at row, sensor, ladder, layer and full detector levels for BG imes 1 and imes 3–5
- \Rightarrow whole detector data flow expected to amount to \sim 0.2 to 1 GB/s , depending on e_{BS}^{\pm} rate
- ⇔ instantaneous flow from row in inner most layer may be critical : up to 200 Bytes per 100 ns

New concept of mechanical support & heat extractor:

 \Rightarrow objective : mount, connect & operate \leq 10 MIMOSA-17 sensors, thinned to 50 μm , on 50–100 μm thin, aluminised, CVD diamond slabs \equiv mech. support – heat extractor - cable support

 \Leftrightarrow status : 3 diamond 3" wafers fabricated \rightarrow electroplating and lithography

General remarks :

- CMOS sensors call for SPECIFIC system integration solutions : connexions (flex cable), data flow, ...
- \Rightarrow Lack of studies going on (expertised manpower) \Rightarrow may become a Problem

Example of Basic Vertex Detector Design features

ILD geometry: \geq 5 cylind. layers (R = 15–60 mm), $||cos\theta|| \leq 0.90 - 0.96$ \triangleright SiD: shorter barrel & fw/bw disks

L0 and L1 : optimised against occupancy

L2, L3 and L4 : optimised against power dissipation

Pixel pitch varied from \sim 20 μm (L0–L1) to \gtrsim 30 μm (L2–L4) \mapsto minimise P_{diss}

Layer	Radius (mm)	Pitch (μm)	t _{r.o.} (μs)	N_{lad}	N _{pix} (10 ⁶)	P ^{inst} diss (W)	P ^{mean} diss (W)
L0	15	20	25	20	25	<100	<5
L1	\leq 25	25	50	≤26	\leq 65	<130	<7
L2	37	33	\sim 100	24	50	<90	<5
L3	48	33	\sim 100	32	80	<120	<6
L4	60	33	\sim 100	40	150	<125	<8
Total				142	330	<600	3–30

Ultra thin layers: \lesssim 0.2 % X $_0$ /layer (extrapolated from STAR-HFT; \lesssim 40 μm thin sensors)

Very low P_{diss}^{mean} : << 100 W (exact value depends on duty cycle)

Fake hit rate \lesssim 10 $^{-5}$ \mapsto whole detector \cong close to 1 GB/s (mainly from ${
m e}_{BS}^{\pm}$)

Design still evolving \rightarrow optimisation with physics processes (R.De Masi) \rightarrow input to Lol

SUMMARY

Steady progress towards perfo. adapted to running conditions with beam BG >> MC simulations

- **2007 :** * several achievements (beam tests) and progresses on sensor R&D :
 - $50 \ \mu m$ thinning, fast col. // architecture with discri. output, spatial resolution, rad. tol., etc. * successfull 1st experimental use of small sets of sensors \rightarrow telescopes: EUDET-JRA1, TAPI, STAR * progress on syst. integration aspects : thinning, power cycling, ladder, Si/diamond, etc.
- **2008 :** * final EUDET telescope sensor fab.: $1 \times 2 \text{ cm}^2$; 0.6 Mpix; 100 μs ; digital output with \emptyset ; 50 μm thin * STAR-HFT1 sensor fab.: $2 \times 2 \text{ cm}^2$; 0.4 Mpix; 640 μs ; digital output; 50 μm thin $\rightarrow D^0$ phys. in 2010 * several other R&D lines: fast archi. with ADC, new fab. proc., system integ., etc. \rightarrow FP-7 * vertex detector design optimisation with physics processes \rightarrow Lol
- **2008 :** * prototype ladder for outer/inner layers in 2009/2010 (\leq 0.2 % X₀) * final sensor designs for outer/inner layers in 2010/2011
- **Concern :** system integration issues not covered \rightarrow prototype ladder ????

Perspective : 3DIT MIMOSA \equiv 4 chip sandwich of best techno. for sensing, for analog, for mixed, and for digital circuits