Fcal sensors & electronics Alternatives and investigations **Forward Region Design FCAL Collaboration** 14 partners from 10 countries Academy of Science, Prague AGH University of Science & Technology, Krakow Supported by: Brookhaven National Lab, Upton GamCal *FEUROTeV* DESY Institute of Nuclear Physics, PAS, Krakow FUDET Antisolenoid Ploint Institute Nuclear Research, Dubna NoRHDIA Solenoid BeamCal Laboratoire de l Accélérateur Linéaire, Orsay *PINTAS* National Center of Particle & HEP, Minsk PDOE **ECal** HCal Low Z Royal Holloway University, London **PISE** Mask Tel Aviv University PCor Fital >University of Colorado, Boulder acke FD Cryostats > VINCA Inst. of Nuclear Sciences, Belgrade Yale University, New Haven Detectors ILC RDR LumiCal Cooperation with SLAC Vertex Detector IP Champer

FCAL Collaboration Meeting

from Friday 05 October 2007 (08:30) to Saturday 06 October 2007 (16:00) at Laboratoire de l'Accélérateur Linéaire (*room 101*) chaired by Wolfgang Lohmann (DESY)

Description: Twice yearly meeting of the ILC Forward Calorimetry collaboration.

7 sessions in 2 days:

Friday 05 October 2007 Saturday 06 October 2007

1-Introduction session 1: Physics and Beam diagnostic using beamcal 2- Session 2 : integration, vacuum issues

3- Session 3 : Lumical and Beamcal issues4- session 4: FCAL Electronics and readout

Saturday

- 1- Beamcal and Lumical Mechanics
- 2- Background estimations and algorithms
- 3- Discussion and closeout session

BeamCal: W-sensor Sandwich

BeamCal: $5 < \theta < 28$ mrad

Sensor and R/O Hybrid

Abdenour LOUNIS

Pad size : 1/2 RMoliere

Space for electronics

Length = $30 X_0$

(3.5mm W + .5mm sense

Molière radius= 1 cm

The BeamCal detector

• purpose:

- Detection of electrons/photons at low angle
- Beam diagnostics from beamstrahlung electrons/positron pairs
- Shielding of Inner Detector
- Extend the sensitive region to lowest polar angles (hermeticity)

Two photon cross section

Background 10⁵ times higher than SUSY Cross section

Example of Physics signal

SUSY : smuon production And missing energy

Background signal : 2 photons events may fake signal « in case of electron escape »

Beamstrahlung: Photons and e⁺e⁻ pairs E deposit and Irradiation

Challenging Project

To built a High Precision device, High occupancy, High radiation level and Fast electronic readout \rightarrow innovation in design techniques

Recall

BeamCal structure 2 end caps × 30 Silicon – Tungsten sandwiched layers per cap × 1512 channels per layer Total channel count: **90,720** At 32 channels per chip, this implies **2836 chips**

Sensor options

Silicon radiation Hard

o GaAs

Diamond pCVD , ScCVD

Look for best performances in terms of

Signal yield stability, long-term behavior charge collection efficiency charge collection distance radiation hardness Easy industrial procurement budget

Basics

Assuming a parallel plate detector of thickness λ and E the applied field

<u>Charge collection distance : CCD</u> Average drift distance =

 $δ = (μ_e + μ_h). τ . E$

 $\mu_e = electron mobility$ $\mu_h = hole mobility$

 τ = mobility weighted lifetime o

Efficiency η is the ratio of the tc to the total charge Q_0 generated

 δ and η limited by τ (presence of → Gives hints and information ϵ

* K. Hetch, Z. Phys. 77(1932)235

Gallium Arsenide Compound structure

Band Gap at 300K : 1.424 eV $M_{e}^{*} = 0,067$ me $M_{h}^{*} = 0.45$ me $\mu_{e}^{=} 9200$ cm²/(V.s) $\mu_{h}^{=} 400$ cm²/(V.s)

The choice of GaAs over silicon is dictated by its radiation hardness

Advantages over silicon :

- Higher electron saturated velocity and higher electron mobility

- Working at high frequency (250 GHz)
- Lower noise level at high frequency
- High breakdown level
- no type inversion observed

Silicon advantages:

- -Abundant and cheap process
- Allow fabrication of (2X) larger wafer (~300 mm)
- Presence of SiO2 as insulator

Produced by Siberian Institue of Technology

JINR Tomsk

Diamond sensors

- Higher mobility ~30% e⁻ et 60% holes // better than si
- Low dielectric constant ε =5.7
- Thermal conductivity* 900-2320 W/m.ºK
- (air = 0.025 water = 0.6 silicon = 149)

Available manufacturers E6 and Fraunhofer (IAF) PcvD 1x1 cm² and thickness 200-900 μ m ScvD 5x5 mm² and 340 μ m

pCVD diamonds active area 10x10 mm2, Ti-Pt-Au metallization thickness 500 µm

scCVD diamond area 5x5 mm2, thickness 340 μm, metallization Ø3mm

* It is defined as the quantity of heat, ΔQ , transmitted during time Δt through a thickness L, in a direction normal to a surface of area A, due to a temperature difference ΔT , under steady state conditions and when the heat transfer is dependent only on the temperature gradient

Interfaces Bio fonctionnalisation

Sensors and transducers

- o Dual-gain front-end electronics: charge amplifier, pulse shaper and T/H circuit
- Successive approximation ADC, one per channel
- o Digital memory, 2820 (10 bits + parity) words per channel
- Analog addition of 32 channel outputs for fast feedback; low-latency ADC

BeamCal electronics

Timing diagram: between pulse trains

100000 electronics channels

Summary

Sensors :

- GaAs tested and showed increasing leakage current
- Both poly- and single crystalline CVD diamond sensors stood the absorbed doses of several MGy
- Values of CCD after irradiation being less than that before,

More work to be done

- Understand the mechanism of damage
- Clarify the dependence of CCD on dose, dose rate
- Discuss with manufacturers the possibility to provide more radiation hard samples in future.

Electronics : beginning of the process, first prototypes under tests (charge amplifier and filter) – next year for complete circuit realisation

Beamcal : Matters for contribution et open issues

- Sensors :
- → Exploit new developments in rad hard (oxygenated) silicon
- → Diamond : exploit scientific know-how of next door neighboors (CEA)
- → To provide pure thin diamond sensors (very low noise electronics to be designed for this purpose)
- → Synergy LHC studies and SLHC (irradiation, fine granularity)
- Electronics (one group only for Beamcal electronics)
- → Possible effort here for alternative design to the analog frontend (actual design is made on 0,18 µm CMOS technology)
- → SiGe for analog part is one of the technology adapted for such harsh environment (SLHC) ? Subtle design for minimal power dissipation
- \rightarrow One could exploit its expertise in ADC design

All good ideas ... Suggestions ... participations Commitments ... are warmly encouraged

Additional slides

TEST BEAM @ S-DALINAC

Superconducting DArmstadt LINear ACcelerator Institut für Kernphysik, TU Darmstadt

Using the injector line of the S-DALINAC: 10 ± 0.015 MeV and possible beam currents from 1nA to 50µA

Beam tests setup

Beam area:

Beam exit window

Some material propreties

Property	Si	Diamond	Diamond	
Material Quality	Cz, FZ, epi	Polycrystalline	single crystal	_
E _g [eV]	1.12	5.5	5.5	Bandgan
Ebreakdown [V/cm]	3·10 ⁵	10 ⁷	10 ⁷	Danuyap
$\mu_{\rm e} [{\rm cm}^2/{\rm Vs}]$	1450	1800	>1800	(< <leakage)< th=""></leakage)<>
$\mu_{\rm h} [{\rm cm}^2/{\rm Vs}]$	450	1200	>1200	
v _{sat} [cm/s]	0.8·10 ⁷	$2.2 \cdot 10^{7}$	$2.2 \cdot 10^{7}$	
Ζ	14	6	6	Capacity
ε _r	11.9	5.7	5.7	Capacity
e-h energy [eV]	3.6	13	13 ←	Disulas amont
Density [g/cm3]	2.33	3.515	3.515	Displacement
Displacem. [eV]	13-20	43	43	
e-h/µm for mips	89	36	36	Signal : 36e/µm
Max initial ccd [µm]	>500	280	550	
Max wafer \$\$ tested	6"	6"	6mm	
Producer	Several	Element-Six	Element-Six	

basics

Front End electronics status

Silicon devices

 τ_t trapping time increase with fluence *

LAL

Abdenour LOUNIS

* krasel et al. (RD50) NIM A541(2005)189

 $C = A_{\sqrt{\frac{\varepsilon}{2\rho\mu V_{b}}}} ===> C \propto \frac{1}{\sqrt{V_{b}}}.$

1/C² en fonction de la polarisation

