A 130nm CMOS Evaluation Digitizer Chip for Silicon Strips readout at the ILC

Institut National de Physique Nucléaire et de Physique des Particules

Thanh Hung PHAM

on behalf of

W. Da Silva¹, J. David ¹, M. Dhellot¹, D. Fougeron², J-F. Genat ¹, R. Hermel², J-F. Huppert¹, F. Kapusta¹, H. Lebbolo¹, T.H. Pham¹, F. Rossel¹, A. Savoy-Navarro¹, R. Sefri¹, S. Vilalte²

¹LPNHE Paris, ²LAPP Annecy

Work in the framework of the SiLC (Silicon for the Linear Collider), R&D Collaboration and the EUDET I3-FP6 European Project

Outline

- Silicon strips readout
- Front-End Electronics
- A 4-channel evaluation chip in 130nm CMOS
- Conclusion

Silicon strips detectors at the ILC

Silicon tracker system, two cases considered: ILD (Silicon tracking surrounding the TPC and SiD (All Silicon tracking)

Both cases end up to:

- A few 10⁶ Silicon strips
- 10-30 max (could reach 60cm in extreme case) strip length,
- Thickness $\leq 300 \, \mu m$
- Strip pitch $\leq 50 \, \mu m$
- AC coupled (could be DC if needed)

Millions of channels

Integration of k-scale channels readout chip

Silicon strips data

- Pulse height: Cluster centroid to get a few µm position resolution

Detector pulse analog sampling

- Time: 150-300 ns for BC identification
 - Shaping time of the order of the microsecond depending upon strip length (capacitance)

80ns analog pulse sampling and on-chip digitization

Outline

- Silicon strips readout
- Front-End Electronics
- Evaluation chip in 130nm CMOS
- Conclusion

Functionalities to be integrated

Full readout chain integration in a single chip

- Preamp-shaper
- Sparsification
- Sampling
- Analog event buffering:
- On-chip digitization

Trigger decision on analog sums 8-deep sampling analog pipe-line Occupancy: 8-16 deep event buffer 10-bit ADC

- Buffering and pre-processing: Centroids, least square fits, lossless compression and error codes
- Calibration and calibration management
- Power switching (ILC duty cycle)

Front-End chip numbers

- Goal: Integrate 512-1024 channels in 90nm CMOS:
 - Amplifiers: 30 mV/MIP over 30 MIP range
 - Shapers: Two ranges: 500ns–1μs, 1μs-3μs
 - Sparsifier: Threshold the sum of 3-5 adjacent channels
 - Samplers: 8 samples at 80ns sampling clock period
 - Event buffer 8-16 deep
 - > Noise baseline:

 \triangleright

Measured with 180nm CMOS: 375 + 10.5 e-/pF @ 3 µs shaping, 210µW power S/N = 20 @ 90cm long strips

- ➢ ADC: 10 bits
- Buffering, digital pre-processing
- > Calibration
- Power switching can save a factor up to 200

ILC timing: 1 ms: ~ 3000 trains @ 360ns / BC 199ms in between

Front-end architecture

Charge 1-30 MIP, Time resolution: BC tagging 150-300ns 80ns analog pulse sampling

Technology: Deep Sub-Micron CMOS 130-90nm

Outline

- Silicon strips readout
- Front-End Electronics
- Evaluation chip in 130nm CMOS
- Conclusion

Front-end in 130nm

Motivation for 130nm CMOS:

- Smaller
- Faster
- Less power
- Will be (is) dominant in industry
- (More radiation tolerant)

Drawbacks:

- Reduced voltage swing (Electric field constant)
- Noise slightly increased (1/f)
- Leaks (gate/subthreshold channel)
- Design rules more constraining
- Models more complex, not always up to date

UMC CMOS Technology parameters

		180 nm	130nm
• • • •	3.3V transistors Logic supply Metals layers MIM capacitors Transistors	yes 1.8V 6 Al 1fF/μm² Three Vt options	yes 1.2V 8 Cu 1.5 fF/μm² Low leakage option
	N	May be used for analog storage during ~ 1 ms	

Help from IMEC Europractice (Leuven, Belgium): Paul Malisse, Erwin Deumens

4-channel Chip

4-channel chip layout

Amplifier, Shaper, Sparsifier 90*350 μm^2 Analog sampler 250*100 μm^2

180nm 130nm

Layout of the 130nm chip including sampling and A/D conversion

Preamp-shaper results

Preamp output

Shaper output

Measured gain - linearities

Noise results

Digitized analog pipeline output Laser response of detector + 130nm chip

Readout rate = 10 KHz

From calibration pulser as input

INSTITUT NATIONAL DE PHYSIQUE NUCLÉA

From Laser diode + Silicon detector

- Averaged response of 120 GeV pions through 500 μm thick Silicon detector
- Actual pedestal spread: 100mV under investigation (decouplings on PCB)
- Pedestal subtracted off-line, then digitized shaper waveform OK. (see also Jacques David's presentation)

130nm chip pedestals/beam response

Next chip: Planned Digital

- 128 channels in 130nm CMOS
- Chip control
- Digital buffer
- Processing for :
 - Calibrations
 - Amplitude and time least squares estimation, centroids
 - Raw data lossless compression
- Tools
 - Cadence DSM Place and Route tool
 - Digital libraries in 130nm CMOS available
 - Synthesis from VHDL/Verilog
 - SRAM
 - Some IPs: PLLs

Needs for a mixed-mode simulator

128-channel chip

UMC CMOS 130nm Mixed-mode process

Conclusion

This CMOS 130nm design and first test results demonstrate the feasibility of a highly integrated front-end for Silicon strips (or large pixels) with

- DC power under 500µW/ch
- Silicon area under 100 x 500 μ^2/ch

Allows to design a 128 channel chip starting from validated analog blocks

-> The 128 channel chip is one main deliverable of the EUDET FP6 EU Project within the JRA2-SiTRA task. It has to equip the forthcoming larger prototypes under construction

-> There is a growing effort within the SiLC collaboration for developing this new version and also starting to design the next step in the readout-DAQ system right after the FE chip (see Aurore's talk)

The End ...