N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

The quantum N-body problem and

 the auxiliary field methodClaude Semay
claude.semay@umons.ac.be
F.R.S.-FNRS Senior Research Associate
University of Mons - UMONS

30 years of strong interactions - Spa 2011
fn's

Collaboration

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful
theorerns
Nonrelativistic
two-body
systems
Semirelativistic kinematics

N -body
systems
Application: baryons in large N_{C} limit

Publications

University of Mons

- C. Semay
- F. Buisseret
- F. Brau

LPSC Grenoble

- B. Silvestre-Brac

Outline

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

The auxiliary field method (AFM): to obtain approximate closed-form solutions for eigenequations in quantum mechanics

1 Useful theorems

2 Nonrelativistic two-body systems

3 Semirelativistic kinematics
$4 N$-body systems

5 Application: baryons in large N_{c} limit

Useful theorems
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful
theorems
Nonrelativistic
two-body

The Hellmann-Feynman theorem
$H(\lambda)$ is the Hamiltonian and λ is a parameter

$$
H(\lambda)|\lambda\rangle=E(\lambda)|\lambda\rangle
$$

$E(\lambda)$ is the energy and $|\lambda\rangle$ the normalized bound eigenstate

$$
\frac{\partial E(\lambda)}{\partial \lambda}=\langle\lambda| \frac{\partial H(\lambda)}{\partial \lambda}|\lambda\rangle
$$

Example: $\frac{\partial E}{\partial m_{i}}<0$ for a N-body nonrelativistic system with interaction independent of m_{i}
(1989)
fn's UMONS

Useful theorems

The general virial theorem
H is a two-body Hamiltonian

$$
H=T(\mathbf{p})+V(\mathbf{r})+K
$$

$|\phi\rangle$ is a normalized eigenstate

$$
\langle\phi| \mathbf{p} \nabla_{\mathbf{p}} T(\mathbf{p})|\phi\rangle=\langle\phi| \mathbf{r} \nabla_{\mathbf{r}} V(\mathbf{r})|\phi\rangle
$$

Example:
$H=2 \sqrt{\mathbf{p}^{2}}+a r \rightarrow\langle\phi| 2 \sqrt{\mathbf{p}^{2}}|\phi\rangle=\langle\phi| a r|\phi\rangle=M / 2$
W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990)
fn's

Useful theorems

The comparison theorem

$$
\begin{aligned}
& H^{(1)}=T(\mathbf{p})+V^{(1)}(\mathbf{r}) \\
& H^{(2)}=T(\mathbf{p})+V^{(2)}(\mathbf{r})
\end{aligned}
$$

We assume that $E_{\{\alpha\}}^{(1)}$ and $E_{\{\alpha\}}^{(2)}$ exist where $E_{\{\alpha\}}^{(i)}$ is an eigenvalue of $H^{(i)}$ with quantum number $\{\alpha\}$

$$
V^{(2)} \geq V^{(1)} \quad \Rightarrow \quad E_{\{\alpha\}}^{(2)} \geq E_{\{\alpha\}}^{(1)}
$$

Example:

If $V(\mathbf{r})=\kappa v(r)$ with $v(r)>0$, then eigenvalues increase with κ
目 C. Semay, Phys. Rev. A 83, 024101 (2011)
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful
theorems
Nonrelativistic two-body systems

Nonrelativistic two-body systems

The auxiliary field $\hat{\nu}$
We want to study

$$
H=\frac{\mathbf{p}^{2}}{2 m}+V(r)
$$

Let us consider a new Hamiltonian

$$
\begin{aligned}
& \tilde{H}(\hat{\nu})=\frac{\mathbf{p}^{2}}{2 m}+\tilde{V}(r, \hat{\nu}) \quad \text { with } \\
& \tilde{V}(r, x)=x P(r)+V(I(x))-x P(I(x)), \\
& I(x)=K^{-1}(x) \text { and } \quad K(x)=\frac{V^{\prime}(x)}{P^{\prime}(x)}
\end{aligned}
$$

Variational procedure:
$\left.\delta_{\hat{\nu}} \tilde{H}(\hat{\nu})\right|_{\hat{\nu}=\hat{\nu}_{0}}=0 \Rightarrow \hat{\nu}_{0}=K(r)$ and $\tilde{H}\left(\hat{\nu}_{0}\right)=H$

Nonrelativistic two-body systems

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems

The approximation

To replace $\hat{\nu}$ by a real parameter ν
$\Rightarrow \tilde{V}(r, \nu)$ is a linear function of $P(r)$
For a good choice of $P(r), \tilde{H}(\nu)$ is solvable and

$$
E(\nu)=e(\nu)+V(I(\nu))-\nu P(I(\nu))
$$

where

$$
h(\nu)|\psi(\nu)\rangle=e(\nu)|\psi(\nu)\rangle \quad \text { with } \quad h(\nu)=\frac{\mathbf{p}^{2}}{2 m}+\nu P(r)
$$

Approximate solutions given by $E\left(\nu_{0}\right)$ and $\left|\psi\left(\nu_{0}\right)\right\rangle$:

$$
\left.\partial_{\nu} E(\nu)\right|_{\nu=\nu_{0}}=0
$$

Nonrelativistic two-body systems
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems

Useful formulas

$e(\nu)$ is an eigenvalue of $\mathbf{p}^{2} /(2 m)+\nu P(r)$
Definition of a mean radius $r_{0}=I\left(\nu_{0}\right)$
with $I(x)=K^{-1}(x)$ and $K(x)=V^{\prime}(x) / P^{\prime}(x)$
$\left.\partial_{\nu} E(\nu)\right|_{\nu=\nu_{0}}=0:$ transcendental equation for $r_{0}=r_{0}(n, I)$

$$
P\left(r_{0}\right)=e^{\prime}\left(K\left(r_{0}\right)\right) \quad \text { with } \quad e^{\prime}(\nu)=\partial_{\nu} e(\nu)
$$

The AFM energy is

$$
E_{\mathrm{AFM}}=E\left(K\left(r_{0}\right)\right)=\underbrace{e\left(K\left(r_{0}\right)\right)-K\left(r_{0}\right) P\left(r_{0}\right)}_{\left\langle\psi\left(\nu_{0}\right)\right| \mathbf{p}^{2} /(2 m)\left|\psi\left(\nu_{0}\right)\right\rangle}+V\left(r_{0}\right)
$$

Nonrelativistic two-body systems
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics

Approximate potential
$V(r)$ is approximated by

$$
\begin{aligned}
\tilde{V}\left(r, \nu_{0}\right) & =\nu_{0} P(r)+V\left(I\left(\nu_{0}\right)\right)-\nu_{0} P\left(I\left(\nu_{0}\right)\right) \\
& =\frac{V^{\prime}\left(r_{0}\right)}{P^{\prime}\left(r_{0}\right)}\left(P(r)-P\left(r_{0}\right)\right)+V\left(r_{0}\right)
\end{aligned}
$$

because $r_{0}=I\left(\nu_{0}\right)$ and $K\left(r_{0}\right)=\nu_{0}$
$\tilde{V}\left(r, \nu_{0}\right)$ is tangent to $V(r)$ at r_{0} :

- $\tilde{V}\left(r_{0}, \nu_{0}\right)=V\left(r_{0}\right)$
- $\tilde{V}^{\prime}\left(r_{0}, \nu_{0}\right)=V^{\prime}\left(r_{0}\right)$

Nonrelativistic two-body systems

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics

N -body

systems

Upper and lower bounds - 1
Consequence of the comparison theorem:

- $\tilde{V}\left(r, \nu_{0}\right) \geq V(r): E_{\mathrm{AFM}}$ is an upper bound
- $\tilde{V}\left(r, \nu_{0}\right) \leq V(r): E_{\mathrm{AFM}}$ is a lower bound

Nonrelativistic two-body systems

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorerns

Nonrelativistic two-body systems

Upper and lower bounds - 1
Consequence of the comparison theorem:

- $\tilde{V}\left(r, \nu_{0}\right) \geq V(r): E_{\mathrm{AFM}}$ is an upper bound
- $\tilde{V}\left(r, \nu_{0}\right) \leq V(r): E_{\mathrm{AFM}}$ is a lower bound

Upper and lower bounds - 2
Let us define $g(x)$ by $V(x)=g(P(x))$:

- $g(x)$ concave: E_{AFM} is an upper bound
- $g(x)$ convex: E_{AFM} is a lower bound

Nonrelativistic two-body systems

Power-law potentials
$V(r)=\operatorname{sgn}(\eta)$ a $r^{\eta} \quad$ with $\quad a>0,-1 \leq \eta \leq 2$

$$
E_{\mathrm{AFM}}=\frac{2+\eta}{2 \eta}(a|\eta|)^{\frac{2}{\eta+2}}\left(\frac{Q(n, l)^{2}}{m}\right)^{\frac{\eta}{\eta+2}}
$$

- $Q(n, I)=2 n+I+3 / 2$ for $P(r)=r^{2}$ (upper bound)
- $Q(n, 0)=2\left(-\alpha_{n} / 3\right)^{3 / 2}$ for $P(r)=r$
α_{n} : zero of the Airy function
- $Q(n, I)=n+I+1$ for $P(r)=-1 / r$ (lower bound)
N-body problem and auxiliary field
C. Semay

Collaboration Outline

Useful theorems

Nonrelativistic two-body systems

Nonrelativistic two-body systems

Connection with envelope theory

Search for $\tilde{V}\left(r, \nu_{0}\right)$ is the basis of the envelope theory developed by Richard L. Hall (~ 1980)

Novelties in AFM: $\hat{\nu}_{0}=K(r)$ and $\nu_{0}=K\left(r_{0}\right)$

- $\left\langle\psi\left(\nu_{0}\right)\right| P(r)\left|\psi\left(\nu_{0}\right)\right\rangle=P\left(r_{0}\right)$
- $\left\langle\psi\left(\nu_{0}\right)\right| Z\left(\hat{\nu}_{0}\right)\left|\psi\left(\nu_{0}\right)\right\rangle=Z\left(\nu_{0}\right)$ with $Z(x)=P(I(x))$

The method is a kind of mean field approximation

- $\left\langle\psi\left(\nu_{0}\right)\right| V(r)\left|\psi\left(\nu_{0}\right)\right\rangle=V\left(r_{0}\right)-E_{\mathrm{AFM}}+\left\langle\psi\left(\nu_{0}\right)\right| H\left|\psi\left(\nu_{0}\right)\right\rangle$

For the ground state:

$$
E_{\mathrm{AFM}}-E \geq V\left(r_{0}\right)-\left\langle\psi\left(\nu_{0}\right)\right| V(r)\left|\psi\left(\nu_{0}\right)\right\rangle
$$

Nonrelativistic two-body systems

General equations

$$
\begin{array}{rlrl}
T(x)=\frac{x^{2}}{2 m} & \\
E_{\mathrm{AFM}} & =T\left(p_{0}\right)+V\left(r_{0}\right) & & (\text { semiclassical energy }) \\
p_{0} & =\frac{Q(n, l)}{r_{0}} & & \text { (correspondence principle) } \\
\frac{p_{0}^{2}}{m} & =r_{0} V^{\prime}\left(r_{0}\right) & & \text { (virial theorem) }
\end{array}
$$

$Q(n, I)$ depends on $P(r)$
OK for $V(x)=\alpha x^{a}+\beta x^{b}, \ln (\alpha x),-k e^{-x^{a}}, \sqrt{\alpha x^{2}+\beta}, \ldots$
Critical k for $V(x)=-k e^{-x^{a}},-k \frac{e^{-x}}{x}, \ldots$
fn's
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics
N-body systems

Nonrelativistic two-body systems

Exponential potentials

$$
\begin{aligned}
h & =\mathbf{p}^{2}-k e^{-r^{\eta}} \quad \text { with } \quad k>0, \eta>0 \\
E_{\mathrm{AFM}} & =-k\left(\frac{-Y}{W_{0}(-Y)}\right)^{\frac{\eta+2}{\eta}}\left[1+\frac{\eta+2}{2} W_{0}(-Y)\right]
\end{aligned}
$$

with $Y=\frac{\eta}{\eta+2}\left(\frac{2 Q(n, l)^{2}}{\eta k}\right)^{\frac{\eta}{\eta+2}} \quad$ and
(

Critical $k: k_{\eta ; n l}=\left(\frac{\eta e}{2}\right)^{\frac{2}{\eta}} Q(n, l)^{2}$

Semirelativistic kinematics

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics

The auxiliary field $\hat{\mu}$ and parameter μ
We want to study ($\sigma=1$ or 2)

$$
H=\sigma \sqrt{\mathbf{p}^{2}+m^{2}}+V(r)
$$

Transformation into an equivalent nonrelativistic Hamiltonian
$\tilde{H}(\mu)=\tilde{T}\left(\mathbf{p}^{2}, \mu\right)+V(r) \quad$ with $\quad \tilde{T}\left(\mathbf{p}^{2}, \mu\right)=\frac{\mathbf{p}^{2}+m^{2}}{\mu}+\frac{\sigma^{2}}{4} \mu$
Extremal eigensolutions of $\tilde{H}(\mu)$:

- $M\left(\mu_{0}\right)$ is an upper bound
- $\mu_{0}^{2}=\left\langle\psi\left(\mu_{0}\right)\right| \hat{\mu}^{2}\left|\psi\left(\mu_{0}\right)\right\rangle$ with $\hat{\mu}=\frac{2}{\sigma} \sqrt{\mathbf{p}^{2}+m^{2}}$
fn's UMONS
N-body problem and auxiliary field
C. Semay

Collaboration Outline
Useful theorems

Nonrelativistic two-body systems

Semirelativistic kinematics
N-body systems

Semirelativistic kinematics

Two auxiliary parameters

- Auxiliary parameter μ for $\sigma \sqrt{\mathbf{p}^{2}+m^{2}}$
- Auxiliary parameter ν for $V(r)$ with $P(r)=\operatorname{sgn}(\lambda) r^{\lambda}$

$$
\begin{aligned}
\tilde{H}(\mu, \nu) & =\tilde{T}\left(\mathbf{p}^{2}, \mu\right)+\tilde{V}(r, \nu) \\
\tilde{T}\left(\mathbf{p}^{2}, \mu\right) & =\frac{\mathbf{p}^{2}+m^{2}}{\mu}+\frac{\sigma^{2}}{4} \mu \\
\tilde{V}(r, \nu) & =\operatorname{sgn}(\lambda) \nu r^{\lambda}+V(I(\nu))-\operatorname{sgn}(\lambda) \nu I(\nu)^{\lambda}
\end{aligned}
$$

$M_{\text {AFM }}$ is given by extremal solutions $M\left(\mu_{0}, \nu_{0}\right)$ of $\tilde{H}(\mu, \nu)$
fn's

Semirelativistic kinematics

Simplified formulation-1
μ_{0} and ν_{0} can be expressed in terms of x_{0}

$$
\begin{aligned}
\mu_{0}\left(x_{0}\right) & =\frac{2}{\sigma} \sqrt{m^{2}+Q^{2 \lambda /(\lambda+2) x_{0}}} \\
\nu_{0}\left(x_{0}\right) & =K\left(Q^{2 /(\lambda+2)} / \sqrt{x_{0}}\right)
\end{aligned}
$$

with

$$
x_{0}=\left(\frac{|\lambda|}{2} \mu_{0} \nu_{0}\right)^{2 /(\lambda+2)}
$$

The structure of Q depends on λ
fn's

Semirelativistic kinematics

Simplified formulation-2

The mean radius is then given by

$$
r_{0}=\frac{Q^{2 /(\lambda+2)}}{\sqrt{x_{0}}}
$$

The unique transcendental equation for r_{0} is

$$
\sigma Q=r_{0}^{2} V^{\prime}\left(r_{0}\right) \sqrt{1+\left(\frac{m r_{0}}{Q}\right)^{2}}
$$

The AFM Mass is then

$$
M_{\mathrm{AFM}}=\frac{\sigma Q}{r_{0}} \sqrt{1+\left(\frac{m r_{0}}{Q}\right)^{2}}+V\left(r_{0}\right)
$$

fn's

Semirelativistic kinematics

General equations

$$
T(x)=\sigma \sqrt{x^{2}+m^{2}}
$$

$$
\begin{array}{cl}
M_{\mathrm{AFM}}=T\left(p_{0}\right)+V\left(r_{0}\right) & (\text { semiclassical energy }) \\
p_{0}=\frac{Q(n, l)}{r_{0}} & (\text { correspondence principle) } \\
p_{0} T^{\prime}\left(p_{0}\right)=r_{0} V^{\prime}\left(r_{0}\right) & (\text { general virial theorem })
\end{array}
$$

$Q(n, I)$ depends on $P(r)$
OK for $V(x)=\alpha x^{a}+\beta x^{b}, \ln (\alpha x), \sqrt{\alpha x^{2}+\beta}, \ldots$
Critical k for $V(x)=-k \frac{e^{-x}}{x}, \ldots$
fn's
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorerns

Nonrelativistic two-body systems

Semirelativistic kinematics

Semirelativistic kinematics

Power-law potentials

$$
H=\sigma \sqrt{\mathbf{p}^{2}+m^{2}}+\operatorname{sgn}(\eta) a r^{\eta}
$$

- $m \neq 0$: analytical solutions exist for some η
- $m=0: M_{\mathrm{AFM}}=\frac{\eta+1}{\eta}(a|\eta|)^{\frac{1}{\eta+1}}(\sigma Q)^{\frac{\eta}{\eta+1}} \quad(\eta>0)$
fn's UMONS
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics

N -body

systems

Application baryons in large N_{c} limit Publications

Semirelativistic kinematics

Power-law potentials

$$
H=\sigma \sqrt{\mathbf{p}^{2}+m^{2}}+\operatorname{sgn}(\eta) a r^{\eta}
$$

- $m \neq 0$: analytical solutions exist for some η
- $m=0: M_{\mathrm{AFM}}=\frac{\eta+1}{\eta}(a|\eta|)^{\frac{1}{\eta+1}}(\sigma Q)^{\frac{\eta}{\eta+1}} \quad(\eta>0)$

Funnel potential

$$
H=\sigma \sqrt{\mathbf{p}^{2}+m^{2}}+a r-\frac{b}{r} \quad(a>0, b \geq 0)
$$

■ $m \neq 0$: analytical solution exists
■ $m=0: M_{\mathrm{AFM}}=2 \sqrt{a(\sigma Q-b)}$
fn's UMONS

N-body problem and auxiliary field

C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems

Semirelativistic kinematics

Semirelativistic kinematics

Duality relation

$$
\begin{aligned}
H_{\mathrm{NR}}=\frac{\mathbf{p}^{2}}{2 m}+V(r) & \Rightarrow \quad E(m ; Q) \\
H_{\mathrm{UR}}=\sigma \sqrt{\mathbf{p}^{2}}+W(r) & \Rightarrow \quad M(\sigma ; Q) \\
E(m ; Q)=M(\sigma ; Q) \quad \text { if } \quad & \left\{\begin{array}{l}
V(\alpha \sqrt{r})=W(r) \\
2 \alpha^{2} m \sigma=Q
\end{array}\right.
\end{aligned}
$$

- Relations exact for the AFM approximations
- If $V(r) \propto r^{2}$, errors around $10-35 \%$ for exact solutions
fn's
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic

N-body systems

General Hamiltonian

$$
H=\sum_{i=1}^{N} \sqrt{\mathbf{p}_{i}^{2}+m_{i}^{2}}+\sum_{i=1}^{N} V_{i}\left(\left|\mathbf{r}_{i}-\mathbf{R}\right|\right)+\sum_{i<j=1}^{N} \bar{V}_{i j}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- $\sum_{i=1}^{N} \mathbf{p}_{i}=\mathbf{0}$
- \mathbf{R} is the (nonrelativistic) cm
- $V_{i}(x)$: one-body potential
- $\bar{V}_{i j}(x)$: two-body potential
fn's
N-body systems

AFM Hamiltonian

$$
\begin{aligned}
\tilde{H}= & \sum_{i=1}^{N}\left[\frac{\mathbf{p}_{i}^{2}+m_{i}^{2}}{2 \mu_{i}}+\frac{\mu_{i}}{2}\right] \\
& +\sum_{i=1}^{N}\left[\nu_{i} P\left(r_{i}\right)+V_{i}\left(l_{i}\left(\nu_{i}\right)\right)-\nu_{i} P\left(l_{i}\left(\nu_{i}\right)\right)\right] \\
& +\sum_{i<j=1}^{N}\left[\bar{\nu}_{i j} \bar{P}\left(r_{i j}\right)+\bar{V}_{i j}\left(\bar{l}_{i j}\left(\bar{\nu}_{i j}\right)\right)-\bar{\nu}_{i j} \bar{P}\left(\bar{I}_{i j}\left(\bar{\nu}_{i j}\right)\right)\right]
\end{aligned}
$$

where $r_{i}=\left|\mathbf{r}_{i}-\mathbf{R}\right|, r_{i j}=\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|$
and $I_{i}(x)=K_{i}^{-1}(x), K_{i}(x)=V_{i}^{\prime}(x) / P^{\prime}(x), \ldots$
N-body systems
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems Semirelativistic kinematics systems
N-body harmonic oscillator: $P(x)=\bar{P}(x)=x^{2}$

$$
H_{\mathrm{ho}}=\sum_{i=1}^{N} \frac{\mathbf{p}_{i}^{2}}{2 m_{i}}+\sum_{i=1}^{N} k_{i}\left(\mathbf{r}_{i}-\mathbf{R}\right)^{2}+\sum_{i<j=1}^{N} \bar{k}_{i j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)^{2}
$$

Eigenenergies given by

$$
E_{\mathrm{ho}}=\sum_{i=1}^{N-1} \omega_{i}\left(2 n_{i}+l_{i}+3 / 2\right)
$$

ω_{i} are eigenvalues of an analytical $(N-1)$ th order matrix

- Analytical expression for $N \leq 5$

■ New result: $k_{i} \neq 0$
fn's

N-body systems

Identical particles

$m_{i}=m, k_{i}=k$ and $\bar{k}_{i j}=\bar{k}:$

$$
E_{\mathrm{ho}}=\sqrt{\frac{2}{m}(k+N \bar{k})} Q
$$

where Q is the total principal quantum number

$$
Q=\sum_{i=1}^{N-1}\left(2 n_{i}+l_{i}\right)+\frac{3}{2}(N-1)
$$

fn's UMONS
C. Semay

General Hamiltonian with identical particles
$m_{i}=m, V_{k}(x)=V(x)$ and $\bar{V}_{k l}(x)=\bar{V}(x)$
\mathbf{R} is the cm
For (anti)symmetrical states: $\mu_{i}=\mu, \nu_{i}=\nu$ and $\bar{\nu}_{i j}=\bar{\nu}$

$$
\begin{aligned}
M_{\mathrm{AFM}} & =N \mu_{0}+N V\left(I\left(\nu_{0}\right)\right)+\frac{N(N-1)}{2} \bar{V}\left(\bar{I}\left(\bar{\nu}_{0}\right)\right) \quad \text { with } \\
\mu_{0} & =\frac{m^{2}}{\mu_{0}}+\left[\frac{2 Q^{2}\left(\nu_{0}+N \bar{\nu}_{0}\right)}{\mu_{0} N^{2}}\right]^{1 / 2} \\
I\left(\nu_{0}\right) & =\left[\frac{Q^{2}}{2 N^{2} \mu_{0}\left(\nu_{0}+N \bar{\nu}_{0}\right)}\right]^{1 / 4} \\
\bar{I}\left(\bar{\nu}_{0}\right) & =\left[\frac{2 Q^{2}}{(N-1)^{2} \mu_{0}\left(\nu_{0}+N \bar{\nu}_{0}\right)}\right]^{1 / 4}
\end{aligned}
$$

fn's
N-body systems

Simplified formulation

With $X_{0}=\sqrt{2 \mu_{0}\left(\nu_{0}+N \bar{\nu}_{0}\right)}$,

$$
\begin{aligned}
M\left(X_{0}\right)= & N \sqrt{m^{2}+\frac{Q}{N} X_{0}}+N V\left(\sqrt{\frac{Q}{N X_{0}}}\right) \\
& +\frac{N(N-1)}{2} \bar{V}\left(\sqrt{\frac{2 Q}{(N-1) X_{0}}}\right)
\end{aligned}
$$

where

$$
X_{0}^{2}=2 \sqrt{m^{2}+\frac{Q}{N} x_{0}}\left[K\left(\sqrt{\frac{Q}{N X_{0}}}\right)+N \bar{K}\left(\sqrt{\frac{2 Q}{(N-1) X_{0}}}\right)\right]
$$

N-body systems

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic
Upper and lower bounds
$g(x)=V(\sqrt{x})$ and $\bar{g}(x)=\bar{V}(\sqrt{x})$

- Nonrelativistic system $(m \rightarrow \infty)$

If $g(x)$ and $\bar{g}(x)$ are concave, $M\left(X_{0}\right)$ is an upper bound If $g(x)$ and $\bar{g}(x)$ are convex, $M\left(X_{0}\right)$ is a lower bound

- Semirelativistic system ($m \ll M$) If $g(x)$ and $\bar{g}(x)$ are concave, $M\left(X_{0}\right)$ is an upper bound

N-body systems

N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems Semirelativistic kinematics systems

Application: baryons in large N_{c} limit

Eigenfunctions

given in Jacobi coordinates as a product of $(N-1)$ oscillator states with a size depending on X_{0}

- Good parity
- Possible to fix angular momentum
- Possible to fix a symmetry
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems

Semirelativistic kinematics
N-body systems

Application: baryons in large N_{c} limit Publications

N-body systems

Eigenfunctions

given in Jacobi coordinates as a product of $(N-1)$ oscillator states with a size depending on X_{0}

- Good parity
- Possible to fix angular momentum
- Possible to fix a symmetry

Observables

- $\left\langle\sum_{i=1}^{N} \mathbf{p}_{i}^{2}\right\rangle=Q X_{0}$
- $\left\langle\sum_{i=1}^{N}\left(\mathbf{r}_{i}-\mathbf{R}\right)^{2}\right\rangle=\frac{Q}{X_{0}}$

■ $\left\langle\sum_{i<j=1}^{N}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)^{2}\right\rangle=\frac{N Q}{X_{0}}$
fn's
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful

theorems

Nonrelativistic two-body systems

Semirelativistic kinematics
N-body systems

Application baryons in large N_{c} limit Publications

N-body systems

Duality relation $N \leftrightarrow 2$ bodies with $V(x)=0$

$$
M_{\mathrm{UR}}^{(N)}(Q)=\frac{N(N-1)}{2} M_{\mathrm{UR}}^{(2)}\left(\frac{1}{N-1} \sqrt{\frac{2}{N(N-1)}} Q\right)
$$

N-body systems
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Duality relation $N \leftrightarrow 2$ bodies with $V(x)=0$

$$
M_{\mathrm{UR}}^{(N)}(Q)=\frac{N(N-1)}{2} M_{\mathrm{UR}}^{(2)}\left(\frac{1}{N-1} \sqrt{\frac{2}{N(N-1)}} Q\right)
$$

Duality relations $N \leftrightarrow 2$ bodies with $V(x)=0$

$$
E_{\mathrm{NR}}^{(N)}(m ; Q)=\frac{N(N-1)}{2} E_{\mathrm{NR}}^{(2)}\left(\frac{N(N-1)^{2}}{2} m ; Q\right)
$$

- Exact for AFM approximations and $\bar{V}(r) \propto r^{2}$
- Errors around 5% for $\bar{V}(r) \propto r$ and $N=3$

Application: baryons in large N_{c} limit
't Hooft limit (1974)

- Quarks are in $\square \mathrm{of} \operatorname{SU}\left(N_{c}\right)$ with $N_{c} \rightarrow \infty$
- $\alpha_{S} N_{c} \sim O(1)$
- Finite number of flavors
- Suppression of internal quark loops

Application: baryons in large N_{c} limit
N-body problem and auxiliary field
C. Semay

Collaboration
Outline
Useful theorems

Nonrelativistic two-body systems

Semirelativistic kinematics
N-body

systems

Application: baryons in large N_{c} limit

't Hooft limit (1974)

- Quarks are in \square of $\operatorname{SU}\left(N_{c}\right)$ with $N_{c} \rightarrow \infty$
- $\alpha_{S} N_{c} \sim O(1)$
- Finite number of flavors
- Suppression of internal quark loops

Baryon

- N_{c} quarks in a totally antisymmetric color singlet
- Masses of heavy baryons $\sim O\left(N_{c}\right)$
- Same scaling expected for light baryons
fn's
Application: baryons in large N_{c} limit

Light baryon Hamiltonian (Witten, 1979)

$$
\begin{aligned}
& m_{q}=0
\end{aligned}
$$

$$
\begin{aligned}
\sigma & \sim O(1) \quad \text { fundamental string tension } \\
\kappa & =\frac{1}{2}\left(C_{\boxminus}-2 C_{\square}\right) \frac{\alpha_{0}}{N_{c}} \quad \text { with } \quad \alpha_{0} \sim O(1)
\end{aligned}
$$

Application: baryons in large N_{c} limit
N-body problem and auxiliary field
C. Semay

Light baryon properties with $N_{c} \rightarrow \infty$
Band number: $K=\sum_{i=1}^{N_{c}-1}\left(2 n_{i}+\ell_{i}\right) \sim O(1)$

$$
M_{\mathrm{B}} \approx N_{c} \sqrt{\sigma\left(6-\frac{\alpha_{0}}{\sqrt{2}}\right)} \sim O\left(N_{c}\right)
$$

Regge trajectories: $M_{\mathrm{B}}^{2} \approx \beta K+\gamma$ with N_{c} fixed
Contribution of $n_{s}\left(\ll N_{c}\right)$ strange quarks:

$$
\Delta M_{s} \approx n_{s} \frac{m_{s}^{2}}{6 \sqrt{\sigma}} \sqrt{6-\frac{\alpha_{0}}{\sqrt{2}}} \sim O(1)
$$

Mean square radius: $\left\langle r^{2}\right\rangle \approx \frac{12-3 \sqrt{2} \alpha_{0}}{8 \sigma} \sim O(1)$
fn＇s UMONS
N－body problem and auxiliary field

C．Semay

Publications of our team

回 J．Phys．A：Math．Theor． 41 （2008） 275301
回 J．Phys．A：Math．Theor． 41 （2008） 425301
回 J．Phys．A：Math．Theor． 42 （2009） 245301
目 J．Math．Phys． 50 （2009） 032102
R Phys．Rev．D 79 （2009） 094020
固 Int．J．Mod．Phys．A 24 （2009） 4695
葍 J．Math．Phys． 51 （2010） 032104
固 J．Phys．A：Math．Theor． 43 （2010） 265302
目 Phys．Rev．D 82 （2010） 056008
固 arXiv：1101．5222；arXiv：1102．1321

