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The Hellmann-Feynman theorem

H(X) is the Hamiltonian and X is a parameter
HNIA) = E(A)A)

E()) is the energy and |\) the normalized bound eigenstate

- ()

0E
Example: I < 0 for a N-body nonrelativistic system with
.

1
interaction independent of m;

[4 D. B. Lichtenberg, Phys. Rev. D 40, 4196 (1989)
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The general virial theorem

H is a two-body Hamiltonian
H=T({p)+ V()+K
|¢) is a normalized eigenstate

(01pVeT(p)l ¢) = (@ [rV:V(r)| )

Example:
H=2vp+ar — (o]ovp?|0) = (dlarl¢) =

[4 W. Lucha, Mod. Phys. Lett. A 5, 2473 (1990)

M2
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The comparison theorem

HO = T(p)+ V(r)
HO = T(p)+ VA(n)

We assume that E&)} and Efi)} exist
()

where E;, is an eigenvalue of H() with quantum number {a}
(2) (1) (2) (1)
vie >V = E{a} > E{a}
Example:
If V(r) = kv(r) with v(r) > 0, then eigenvalues increase with

[4 C. Semay, Phys. Rev. A 83, 024101 (2011)
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The auxiliary field

We want to study

p2
H=+—+V
> V()

Let us consider a new Hamiltonian

~ p2 ~

A(9) = 53—+ V(r,9) with

V(r,x) =xP(r)+ V (I(x)) = x P (I(x)),
I(x) = K}(x) and K(x)= g/(()fg

Variational procedure:
SH(®)|  =0= 0= K(r)and H(io)=H

=iy
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The approximation

To replace © by a real parameter v
= V/(r,v) is a linear function of P(r)

For a good choice of P(r), H(v) is solvable and
E(v)=e()+ V() -vP{())
where

p?

W) () = @) [0())  with h(v) = 24P
Approximate solutions given by E(1p) and |¢(1p)):

O E(v)| =0

v=1g

(r)
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C. Semay e(v) is an eigenvalue of p?/(2m) + v P(r)

Definition of a mean radius ry = I(1p)
with /(x) = K71(x) and K(x) = V/(x)/P'(x)

Nonrelativistic
two-body ay E(]/) ‘

systems

=, = 0: transcendental equation for ro = ro(n, /)
P(ro) = €' (K(rn)) with €'(v)=d,e(v)
The AFM energy is
Earm = E(K(n)) = e(K(r)) — K(ro) P(ro) +V(ro)
(¥(v0)Ip?/(2m)[¥(r0))
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Approximate potential
V/(r) is approximated by

V(r,vo) = woP(r)+ V (I(0)) — vo P (I(v0))

V'(ro)
Py () = P() + V(o)

because rp = I(1p) and K(r) = 1o

V(r,vp) is tangent to V/(r) at ry:
m V(ro,0) = V(ro)
u \N/,(ro,VO) = V/(ro)
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Upper and lower bounds - 1

Consequence of the comparison theorem:
n \7(r, vo) > V(r): Eapm is an upper bound
m V(r,u0) < V(r): Eapum is a lower bound
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Consequence of the comparison theorem:
n \7(r, vo) > V(r): Eapm is an upper bound
o m V(r,u0) < V(r): Eapum is a lower bound
onrelativistic
two-body

systems

Upper and lower bounds - 2
Let us define g(x) by V(x) = g(P(x)):
m g(x) concave: Expy is an upper bound

m g(x) convex: Eppy is a lower bound
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V(r)=sgn(n)ar?” with a>0 -1<n<?2

241 Q(n, /)2>n"+2

Earm = o (3|77|)”i2<

m

Nonrelativistic
two-body
systems

m Q(n,/) =2n+1+3/2 for P(r) = r? (upper bound)
m Q(n,0) = 2(—an/3)*? for P(r) = r

oy zero of the Airy function
m Q(n,/)=n+1+1for P(r) = —1/r (lower bound)
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€ semay Search for V/(r,1p) is the basis of the envelope theory

developed by Richard L. Hall (~ 1980)

Novelties in AFM: Do = K(r) and vp = K(ro)
Nemellsvisic u <@Z)(VO)‘P(r)|¢(VO)> = P(rO)

two-body
systems

m ()(10)|Z(P0)[(v0)) = Z(v0) with Z(x) = P(/(x))

The method is a kind of mean field approximation

m (Y(v0)|V(r)[¥(v0)) = V(r) — Earm + (¥(v0)|H[Y(r0))
For the ground state:

Earm — E > V(o) — (¢¥(v0)|V(r)[¥(vo))




fn's

UMONS

N-body
problem and
auxiliary field

C. Semay

Nonrelativistic
two-body
systems

Nonrelativistic two-body systems

General equations

2
T(x) =

X
- 2m

Earm = T(po) + V(r0) (semiclassical energy)

/
po = Q(n, /) (correspondence principle)
o
p2
20— rV'(ro) (virial theorem)
m

Q(n,I) depends on P(r)

OK for V(x) = ax?+ BxP, In(ax), —ke™", \Jax2+ 4, ...
Critical k for V(x) = —ke ™", —k €

;e
X
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C. Semay
h=p?>—ke " with k>0, 17>0
Expnt = —k [ ——" ﬁ21+”+2W( Y)
Nonrelativistic
two-body

systems

_n_
with Y = # <2Q7§rl7<,/)2)n+2 and

3N

Critical k: k. = (%;) Q(n, )2
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€ Semay We want to study (o =1 or 2)

H=o0+/p%+m?+ V(r)
Transformation into an equivalent nonrelativistic Hamiltonian

2 2 2
H _ T~ . = p-+m o
Semirelativistic (,u) (p27 ,U/) V(r) with 7 (p2, M) = — L i i

kinematics

Extremal eigensolutions of H():

m M(uo) is an upper bound

2
m 11§ = (¥ (o) 8%t (o)) with i = —\/p* + m?
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m Auxiliary parameter y for o \/p2 + m?

m Auxiliary parameter v for V/(r) with P(r) = sgn(\) r

H(p,v)

Semirelativistic 7‘_([)27 IU,)

kinematics

V(r,v)

A

= sgn(\) v r* + V(I(v)) — sen(\)vl(v)*

Mary is given by extremal solutions M(po, vo) of H(p, )
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1o and 1y can be expressed in terms of xp

no(xo) = 2v/m?+ Q025
o
vo(x0) = K(Qz/(/\+2)/\/x>o)

Semirelativistic Wlth

kinematics
L ‘)\’ 2/(A+2)
0 — 2 Moo

The structure of Q depends on A
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Semirelativistic kinematics

Simplified formulation - 2

The mean radius is then given by

Q2/(X+2)
r = 7\/70
The unique transcendental equation for ry is
2
oQ=rgV'(n)/1+ <QO>

The AFM Mass is then

oQ mrg 2
MAFM = TO 1+ <Q> F V(I’o)
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Semirelativistic kinematics

General equations
T(x) = ovVx2+ m?

Marn = T(po) + V(ro) (semiclassical energy)
Q(n, )

1o
poT'(po) = oV'(r0)  (general virial theorem)

pPo = (correspondence principle)

Q(n, ) depends on P(r)

OK for V(x) = ax?+ Bx?, In(ax), Vax2+3, ...
Critical k for V(x) = —k €

y e
X




H=o0+yp?+ m?+sgn(n)ar”

m m # 0: analytical solutions exist for some 7

a m=0: Mapyt = 2 (alg)7T (0Q)71 (1> 0)
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C. Semay H =0 \/m + Sgn(n) a rn

m m # 0: analytical solutions exist for some 7

a m=0: My = %2 (alnl) 7 (0Q)71 (0> 0)

Semirelativistic Funnel potential

kinematics

b
H=0o p2~|—m2—|—ar—7 (a>0,b>0)

m m # 0: analytical solution exists

mm=0: Mapy =2v/a(c Q — b)
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2
xp=p-+V() =  EmQ)
Hur =ovp?+W(r) =  M(0:Q)
. OV Moy ¢ | V(v = W(r)
e E(m: Q) = M(o: Q) if { 202mo = Q

m Relations exact for the AFM approximations

m If V(r) o< r?, errors around 10-35% for exact solutions
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General Hamiltonian

N

N N
H = ZW+Z Vi =R+ 3 Vil o)
= 1= i<j=

Yiipi=0

R is the (nonrelativistic) cm
Vi(x): one-body potential
Vij(x): two-body potential
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AFM Hamiltonian

— L 2
N

"’Z [vi P(ri) + Vi(li(vi)) — vi
l:,\ll ] o

+ > [75 P(rg) + Vy(T(7))
i<j=1

where r; = |r; — R|, rjj = [r; — 1]
and Ji(x) = K (x), Ki(x) = V{(x)/P'(x).
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N-body harmonic oscillator: P(x) = P(x) = x>

HhO:Z%+Zk ri—R) +Z i

i=1 i=1 i<j=1
Eigenenergies given by

N—1
Eho = Z w,-(2n,- + /,' + 3/2)
i=1
wj are eigenvalues of an analytical (N — 1)th order matrix
m Analytical expression for N <5
m New result: k; # 0
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Identical particles

m; = m, k; = k and Rj:l_c
2 _
Epno =/ —(k+ Nk) Q
m

where @ is the total principal quantum number

N-body

N—-1 3
Q=> (@m+h)+ S(N=1)
i=1
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General Hamiltonian with identical particles

m; = m, Vi(x) = V(x) and Vjy(x) = V(x)
R is the cm
For (anti)symmetrical states: p; =y, vi = v and j; =

N(N—-1) - -

Maewi = Npio+ NV(I(0)) + =D 0(I(0)) with

_ 2oz(vo+Nao>T/2

M= e +[ toN?
Q2 1/4

I(VO) |:2N2MO(VO+ NDO):|
o 2Q2 1/4
(7o) = [(N —1)2p0(vo + Nﬁo)]
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Simplified formulation

With Xo = \/2uo(vo + Niy),

/ Q [ Q
2
N m+NXo+NV< NX0>

N(N —1) - 2Q
T V( (/v—1)x0>
where

2 o fm s 9 | Q i | 2Q
X5 =2 m2+NX0 K( NXO>+NK< (N—l)Xo)

M(Xo) =
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Upper and lower bounds

g(x) = V(vx) and g(x) = V(v/x)

m Nonrelativistic system (m — o)
If g(x) and g(x) are concave, M(Xp) is an upper bound
If g(x) and g(x) are convex, M(Xp) is a lower bound

S’Qﬁ;’iﬁ m Semirelativistic system (m < M)
If g(x) and g(x) are concave, M(Xp) is an upper bound
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states with a size depending on Xj
m Good parity
m Possible to fix angular momentum

m Possible to fix a symmetry

N-body
systems
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Eigenfunctions

given in Jacobi coordinates as a product of (N — 1) oscillator
states with a size depending on Xj

m Good parity
m Possible to fix angular momentum

m Possible to fix a symmetry

Observables
u <Z,N:1 p,2> =QXo

= (S -RP2) = ¢

n <Z,N<j:1(rf - rj)2> = /\)/5
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C. Semay
e Cet)
Duality relations N < 2 bodies with V(x) =0
£ @) = N(N2— D e <N(N2_ 1 Q)
N-body

systems

m Exact for AFM approximations and V/(r) o r?

m Errors around 5% for V/(r) oc r and N =3
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m Finite number of flavors
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Suppression of internal quark loops

Application:
baryons in
large N limit
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Application: baryons in large N, limit

't Hooft limit (1974)
m Quarks are in o of SU(N.) with No — oo
m asN. ~ O(1)
m Finite number of flavors
m Suppression of internal quark loops

Baryon
m N; quarks in a totally antisymmetric color singlet
m Masses of heavy baryons ~ O(N,)

m Same scaling expected for light baryons
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Application: baryons in large N, limit

Light baryon Hamiltonian (Witten, 1979)

mg = 0
Ne Ne Ne 1
Hg = Z p12—|—aZ|r,-—R]+mZ i
i=1 i=1 i<j=1""'" J

0009090090990

A string picture of baryons.

o ~ O(1l) fundamental string tension

1 %) .
Kk = E(CH_2CD>E with ag ~ O(1)
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Application: baryons in large N, limit

Light baryon properties with N. — oo
Band number: K = SN (2n; + £;) ~ O(1)

ao
Mg ~ N, 6 — — | ~ O(N,
. U( ﬁ) (Ne)

Regge trajectories: M3 ~ 3 K + v with N, fixed

Contribution of ns(< N.) strange quarks:

Qg
AM; ~ 6 —
° n56\f \f

Mean square radius: (r?) ~ % ~ 0(1)

~ O(1)
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