Perspectives and future for intranuclear-cascade and nuclear-de-excitation models

Davide Mancusi

Fundamental Interactions in Physics and Astrophysics, Departement of Astrophysics, Geophysics and Oceanography, University of Liège, Belgium

> 7th April 2011 30 years of strong interactions

Plan

Intranuclear cascade

- Principles
- Application domain
- 2 Extensions of standard cascade
 - Exotic nuclei
 - Nucleus-nucleus collisions
- 3 Nuclear de-excitation
 - Spallation et multifragmentation

Principles Application domain

Intranuclear cascade

Intranuclear cascade

Features

- Binary collisionsPauli principle!
- Reflection or transmission on the surface
- Excited remnant
 - Coupling with a de-excitation model

mean free path > incoming wavelength

mean free path > incoming wavelength $\Lambda = \frac{1}{\rho_0 \, \sigma_{N\!N} \, f_{\rm Pauli}}$

mean free path > incoming wavelength $\Lambda = \frac{1}{\rho_0 \, \sigma_{N\!N} \, f_{\rm Pauli}} \qquad \qquad \lambda = \frac{h}{p_{\rm lab}}$

mean free path > incoming wavelength $\Lambda = \frac{1}{\rho_0 \, \sigma_{N\!N} \, f_{\rm Pauli}} \qquad \qquad \lambda = \frac{h}{p_{\rm lab}}$

Applicability of cascade models

For T < 150 MeV:

- ternary collisions
- interference among collisions
- quantum effects

Limited applicability of INC models

Applicability of cascade models

For T < 150 MeV:

- ternary collisions
- interference among collisions
- quantum effects

Limited applicability of INC models

...right?

Quiz!

- 25 MeV
- 1600 MeV

Quiz!

Pb(p,x)n

- 25 MeV
- 1600 MeV

Quiz!

No traces of interference!

Physics changes smoothly with bombarding energy!

Surprise: Pb(p,x)p, Pb(p,x)t, 63 MeV

Guertin *et al.* Eur. Phys. J. A23 (2005) 49

Model: INCL4.5+ABLA07

Quantum effects?

- Better than expected at low energy!
- Dynamics dominated by phase space?
- Details of the collisions are unimportant?

Quantum effects?

- Better than expected at low energy!
- Dynamics dominated by phase space?
- Details of the collisions are unimportant?

Whatever happened to quantum effects?

Dynamics plays a role in a small interval of impact parameters

INC Extensions Nuclear de-excitation Conclusions Principles Application domain

... but this is just hand-waving

Cascade works but we don't really understand why

Plan

Intranuclear cascade

- Principles
- Application domain

2 Extensions of standard cascade

- Exotic nuclei
- Nucleus-nucleus collisions

3 Nuclear de-excitation

Spallation et multifragmentation

Studying nuclear structure with INC

We can use INC to probe the structure of exotic nuclei

Studying nuclear structure with INC

We can use INC to probe the structure of exotic nuclei

Louchart *et al.* Phys. Rev. C83 (2011) 011601(R)

Goal

Describe nucleus-nucleus up to Si+Fe ${\sim}10~{A GeV}$

TODO

- De-excitation of light nuclei
 - Fermi break-up
- Projectile-target symmetry

Describe nucleus-nucleus up to Si+Fe ${\sim}10~{A GeV}$

TODO

- De-excitation of light nuclei
 - Fermi break-up
- Projectile-target symmetry

First approach

Direct extension of cascade (INCL4.5): projectile as a collection of free nucleons

xotic nuclei Nucleus-nucleus collisions

First approach

Direct extension of cascade (INCL4.5): projectile as a collection of free nucleons

xotic nuclei Nucleus-nucleus collisions

First approach

... but we cannot accurately describe projectile fragmentation!

INC Extensions Nuclear de-excitation Conclusions

xotic nuclei Nucleus-nucleus collisions

Symmetric projectile-target treatment

Nucleus-nucleus extension

- projectile-target symmetric
- predict projectile- and target-related observables

Plan

1 Intranuclear cascade

- Principles
- Application domain
- 2 Extensions of standard cascade
 - Exotic nuclei
 - Nucleus-nucleus collisions
- 3 Nuclear de-excitation
 - Spallation et multifragmentation

Multifragmentation

End of cascade

Davide Mancusi

Perspectives and future of INC and de-excitation models

End of cascade

End of cascade

(JC after presenting INCL4.5 results)

Multifragmentation

End of cascade

(JC after presenting INCL4.5 results)

Nuclear de-excitation

Davide Mancusi

Perspectives and future of INC and de-excitation models

Multifragmentation

Multifragmentation

ID card

Simultaneous break-up

- Thermalised remnant
- Expansion
- Spinodal instabilities
- Liquid–gas phase transition?

The question

What is the signature of multifragmentation in a nucleon-nucleus reaction?

De-excitation models

	ABLA07	GEMINI++	SMM
multifragmentation	\sim yes	no	yes!
IMF emission	evaporation	asymmetric fission	evaporation

BLA07: Kelić et al.

Report INDC(NDC)-0530 (2008) 181

GEMINI++: Charity

Report INDC(NDC)-0530 (2008) 139

SMM: Bondorf et al.

Phys. Rep. 257 (1995) 133

Multifragmentation

1-GeV p + ¹³⁶Xe

All models give ~right inclusive cross sections

NC Extensions Nuclear de-excitation Conclusions

Multifragmentation

Longitudinal-velocity distributions

Napolitani et al. arXiv:nucl-ex/0806.3372

Calculated longitudinal-velocity distributions

Davide Mancusi

Perspectives and future of INC and de-excitation models

Calculated longitudinal-velocity distributions

Multifragmentation

Calculated longitudinal-velocity distributions

One or two fragments much heavier than the rest

Coulomb-like kinematics

Plan

Intranuclear cascade

- Principles
- Application domain

Extensions of standard cascade

- Exotic nuclei
- Nucleus-nucleus collisions

3 Nuclear de-excitation

• Spallation et multifragmentation

- Unanswered theoretical questions on the validity of cascade
- Extension to exotic nuclei
- Extension to nucleus-nucleus collisions

Additional slides

SPALADIN simulation

SPALADIN @ GSI

SPALADIN setup

- Inverse kinematics
- Simultaneous measurement of de-excitation products

Additional slides

SPALADIN simulation

SPALADIN @ GSI

GEANT4 simulation

- Source = cascade+désexcitation events
- Filter the calculation with GEANT4 transport
- Thanks to T. Gorbinet and P. Kaitaniemi

Additional slides

Classification of SPALADIN events

Z_{bound} distributions

Z_1 - Z_2 correlations

