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Universal upper bound on the entropy-to-energy ratio for bounded systems
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(Received 7 July 1980; revised manuscript received 25 August 1980)

We present evidence for the existence of a universal upper bound of magnitude 27 R /#ic to the entropy-to-energy
ratio S/E of an arbitrary system of effective radius R. For systems with negligible self-gravity, the bound follows
from application of the second law of thermodynamics to a gedanken experiment involving a black hole. Direct
statistical arguments are also discussed. A microcanonical approach of Gibbons illustrates for simple systems
(gravitating and not) the reason behind the bound, and the connection of R with the longest dimension of the system.
A more general approach establishes the bound for a relativistic field system contained in a cavity of arbitrary shape,
or in a closed universe. Black holes also comply with the bound; in fact they actually attain it. Thus, as long
suspected, black holes have the maximum entropy for given mass and size which is allowed by quantum theory and
general relativity.
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We present evidence for the existence of a universal upper bound of magnitude 2R /#ic to the entropy-to-energy
ratio S/E of an arbitrary system of effective radius R. For systems with negligible self-gravity, the bound follows
from application of the second law of thermodynamics to a gedanken experiment involving a black hole. Direct
statistical arguments are also discussed. A microcanonical approach of Gibbons illustrates for simple systems
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"Historical” remarks - the very original motivation ...

PH \{ \

many questions:

vacuum energy’

effect of the finite size
of a (realistic) system?




Realistic) systems have a finite size ...

effects of a
finite system-size

phenomenologically field-theoretical
relevant: relevance:
e¢QCD phase diagram & Monte-Carlo simulations
HI-collision
eexperiments with L
ultracold atoms Ty phsies |
enuclear physics | Monte-Carlo simulations,

e. g. on graphic cards
. | I B

(Partridge '06)
Lattice QCD:

o ) - , finite volume,
; e =l finite quark masses
40 C a prompty Y Y resonance - .




QCD Phase Diagram
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QCD phase diagram
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(naive) perturbation theory fails: ®not convergent even for very high temperatures:
strongly interacting QGP
ephase transitions: long-range fluctuations are
important
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e guestion, many answers ...
nase boundary at small chemical potentials

(JB, EPJC "09)

4 )

2
TC(ILLCI) — 1 B qu FAIR, www.gsi.de
T.(0) 1. (0) B

| Ny
®large N, expansion: < ~ N (D. Toublan ‘05, JB ‘09)
C

ercsults from different approaches:

Method
RG: QCD flow (B, EPC '09)
Lattice: imag. U 0.500(54) | 0.667(6) o 50

| attice: Taylor+Rew. 1.13(45) S5

latest results for 2+1 flavor QCD: & & 0.58(2) (hotQCD, Kaczmarek et al. *11)
Kk~ 0.79(3) Endrodietal.'11)

® No parameters, relies solely on physical coupling: as(Mz)
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Chiral Phase Diagram in a Finite Box with V' ~ L°

eidea: use chiral low-energy QCD model to study effects of a finite system
size on the QCD phase structure

emethod: renormalization group approach, allows to capture important long-
range fluctuations

N

approach gives access to many phenomenologically
important questions

IN infinite volume

(see e. g. Schaefer, Pirner ’99; Berges, Jungnickel, Wetterich ’99; Berges, Tetradis Wetterich ’'00;
Meyer, Schwenzer, Pirner 01; Spitzenberg, Schwenzer, Pirner '02; JB, Schwenzer, Pirner ‘04)

and finite volumes
(UB, Klein, Pirner ’'05; Klein, JB, Pirner ’05; JB, Klein, Pirner ’05;JB, Klein, Pirner '06; Pirner,
Klein, JB '06;Klein, JB ’07; JB, Klein '08; JB, Klein '09; JB, Klein, Piasecki '10; Klein, JB,
Schaefer '10; cf. talk of B. Klein)




Chiral Diagram in a Finite Box with V' ~ L

s N\ FAIR, www.gsi.de
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Color Super-
conductor?

Net E;;ryon Density
(B. Klein, JB, B.-J. Schaefer, '10;
JB, B. Klein, B.-J.Schaefer, in prep. )

(A. Tripolt, B, B. Klein, B.-J.Schaefer, in prep. )
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econdensate |<1W>|1/ ° vanishes for smal volumes, cf. behavior at high temperatures

econdensate is related to the quark mass: mg ~ |(¢p))|*/3
e se scaling behavior of the curvature < to relate different lattice results?
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Testing finite-size effects in table-top experiments

effects of a
finite system-size

G

phenomenologically field-theoretical
relevant: relevance:
eQCD phase diagram & Monte-Carlo simulations
HI-collision
eexperiments with L
ultracold atoms > phvsios |
enuclear physics | Monte-Carlo simulations,

e. g. on graphic cards
. | I B

(Partridge '06)
Lattice QCD:

o ) - , finite volume,
. e il finite quark masses
40 C a prompty Y Y resonance - .




Ultracold atoms and
finite-size effects

'a| }d!
(b) (e)




Unitary Regime

a
BEC - side BCS - side

®s-wave scattering length is tunable by an
ext. magnetic field (Feshbach resonance)
®interaction strength Is proportional to — >

s-wave scattering length a AB
as< (0 attractive

s >0 repulsive

| C. A. Regal and )
D. S. Jin (2003)
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Unitary Regime

a
BEC - side BCS - side

®s-wave scattering length is tunable by an
ext. magnetic field (Feshbach resonance)

®interaction strength Is proportional to — —
s-wave scattering length a AB
elimit of infinite scattering length a s defines ; (558 RiRasane

a universal regime: o00| C- A Regal and HZ(/
1 1 1 D. S. Jin (2003)
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density (~Fermi momentum) is the only scale (unitarity limit)

e Universal properties:

E/N,T,,--- x universal const(s). X kp

o
T

example: dilute neutron matter

Interaction Energy

@nn| ~ 18.5fm > R ~ 1.4fm




Symmetric Fermi Gases

eExperiment: Fermions in different hyperfine states

e provides an experimentally accessible environment
for a study of quantum phenomena:

(a) BEC regime: tightly bound molecule (as > 0)

(b) Unitary regime: crossover - delocalized
molecule with Eg = 0

(c) BCS regime: delocalized Cooper pairs (as < 0)

esymmetric regime at T=0: smooth crossover,
superfluidity persists

esymmetric regime at finite T. phase transition,
“melting condensate”

(a)
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of bound molecules
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BCS superfluidity
of Cooper pairs




Symmetric Fermi Gases
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(a) BEC regime: tightly bound molecule (as > 0)

(b) Unitary regime: crossover - delocalized
molecule with Eg = 0

(c) BCS regime: delocalized Cooper pairs (as < 0)

esymmetric regime at T=0: smooth crossover,
superfluidity persists

easymmetric systems?
_ Ny =Ny

— > 0
NT—'_Nl
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Asymmetric Fermi Gases

e Spin-polarized Fermi gases, e. g. Ny > N,

» Majority fermions Ny, minority fermions IV
»Polarization P = (Ny — N|)/(Ny + N|)

eWhat happens when we have a population
imbalance?

®Relevance for various research fields, e. g.:
Clogston limit in superconductivity, nuclear physics,
astrophysics, QCD at finite T(7), ...

e Experiments with spin-polarized Fermi gases are very
useful to explore asymmetric strongly-interacting Fermi
systems




imental status with °Li:
anced spin-polarized trapped atoms

R i Ce U m (Partridge '06)

— (o))
1 1

Density (a.u.)

N
1

o

0

. ” Radial Position
Axial Position (um)

~ Isotropic trap

p
cigar-shaped trap Polarization
NS10°<CCecec> Ny — N,

P —
/ NT_|_Nl
\§ J

no superfluid core for no superfluid core

P. 2 0.9 above a critical
polarization P, ~ 0.75

(cf. Chandrasekhar-Clogston limit in metal superconductors ‘62)



Study of trap effects

(Ku, JB, Schwenk, Phys. Rev. Lett. '09)

ecnergy density functional (N > N|):

Density Functional [ K <
Theory:
2 2 Walter Kohn
3 H
(67T ns (I‘)) Nobel prize ‘98
2m

dr{fs%

Elng,nt,n|] = 2/

r|<Rs

2 5/3 2
+/ dr 3 (67 ny) < + ) +B (ﬂ> ny(r)
Rs<r|l<R; |2 2m ny

+U(r)(n)(r)+ny(r)) —prng(r) —um(r)}

e sclf-consistent equation for energy gain 7 (N+1-body problem):

E —co= » Y F(0,h,S) (M~ (er, E| +¢n)]g 1 F(0,h,L),

en<er S,

(671 (0))5
2m

Q> + Z¢m,h,p’ma h7p>

/ \ N
7 \
€ .
S F - LI d (one-particle-one-hole
. : SRR fluctuations)

echoose: E| =1n(a.N)Ep(a,N) with Ep(a,N) =




Imbalanced spin-polarized atoms

(Ku, JB, Schwenk, Phys. Rev. Lett. '09)

®First microscopic study of trapped asymmetric systems based on a 9“09
variational approach and a controlled expansion about a non-interacting 0090“'
single-species Fermi gas «
eHow does the critical polarization P. depend on the trap configuration?

L | |

088 |-

isotropic t - 4
isotropic trap 0.86 N ~ 10 .
0.84 ! ] cigar-shaped trap

. os2L~ " _ B 00O >

08F

MIT . i Rice U.

L1l 11 L1 L1

trap parameter (elongicity of the trap)

—— — Clear indications for strong trap dependence which helps to
understand the different findings at MIT and Rice U.

ofinite-temperature effects: interesting but open question ...




Another geometry: Towards a connection of
continuum and Monte-Carlo studies

employ the same techniques as in QCD

(JB, Klein, Pirner '05; Klein, JB, Pirner ’05; JB, Klein, Pirner ’05;
JB, Klein, Pirner '06; Pirner, Klein, JB ’06;
Klein, JB '07; JB, Klein ’08; JB, Klein ’09; JB, Klein, Piasecki '10; Klein, JB, Schaefer ‘10)

to study supertfluidity in ultracold systems of fermionic atoms at
unitarity with the aid of
renormalization group techniques

Lot ~ Vlepsth + A (TOP)°

N

helps to guide Monte-Carlo simulations
(see e. g. Carlson '03, Bulgac et al. ’06, Lee et al. "10)

Monte-Carlo simulations,
e. g. on graphic cards




Cold atoms in a box: Towards a connection of
continuum and Monte-Carlo studies

3 (6m2ng)3

®RG study of superfluid cold atoms at unitarity: £'/N = {s(L, N)Ep — gsg ;
m

(UB, S. Diehl, M. M. Scherer, in prep.)
€S (L’ N) I I I

€s5(00)

0.95 m

09 r

0.7

_kFlL::const.AJﬁV%

0.65

100 200 300 400 500
L |a.u.]

ehelps to guide Monte-Carlo simulations

(see e. g. Carlson '03, Bulgac et al. '06, Lee et al. *10) . .
Monte-Carlo simulations,

€. g. on graphic cards
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ephenomenological and technical “exchange’
between different fields offers great potential
ecffects of a finite system-size play an
important role in many different physical systems:
Cold atoms in a trap, heavy-ion collisions, nuclear
physics, ...

e\we have just started to understand the effects of a
finite system-size ... there is still more to come!

ultracold
trapped fermlons

(Partridge ’006)

@

Limits of nuclear
existence

[®)

for ordinary nuclei

D Many-body approaches
No-Core Shell Model

G-matrix
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Ab initio for ordinary nuclei
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To Hans-Jurgen:
Thank you very much!




