High Energy Scattering in the Lab and in the Early Universe

Frank Daniel Steffen

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

30 years of strong interactions in honor of J. Cugnon and H.-J. Pirner Spa, April 6th, 2011

Contents today

Standard Thermal History of the Universe

Frank Steffen (Max Planck Institute for Physics, Munich)

Extremely Weakly Interacting Particles (EWIPs)

Axino LSP Case

Frank Steffen (Max Planck Institute for Physics, Munich)

Well-motivated DM Candidates

candidate	identity	mass	interactions	production	constraints	experiments
a	axion (spin 0) NGoldst. boson PQ symm. break.	< 0.01 eV	$(p/f_a)^n$ extremely weak $f_a \gtrsim 6 \times 10^8 { m GeV}$	misalign. mech.	\leftarrow cold CMB	direct searches with microwave cavities $\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$
${\widetilde \chi}^0_1$ LSP	lightest neutralino (spin 1/2) mixture of $\widetilde{B}, \widetilde{W}, \widetilde{H}^0_u, \widetilde{H}^0_d$	<i>♥</i> (100 GeV)	g, g', y_i weak $M_{ m W}$ ~ 100 GeV	therm. relic \widetilde{G} decay	$\leftarrow \text{ cold}$ $\leftarrow \text{ warm/hot}$ BBN	indirect searches direct searches collider searches $\hookrightarrow m_{\tilde{\chi}_1^0}, \tilde{\chi}_1^0$ coupl.
\tilde{G} LSP	gravitino (spin 3/2) superpartner of the graviton	eV-TeV	$(p/M_P)^n$ extremely weak $M_P = 2.4 \times 10^{18} \text{ GeV}$	therm. prod. NLSP decay	← cold ← warm BBN	$\widetilde{\tau}_1$ prod. at colliders + $\widetilde{\tau}_1$ collection + $\widetilde{\tau}_1$ decay analysis $\hookrightarrow m_{\widetilde{G}}, M_P$ (?), T_R
\widetilde{a} LSP	axino (spin 1/2) superpartner of the axion	eV–GeV	$(p/f_a)^n$ extremely weak $f_a \gtrsim 6 \times 10^8 { m GeV}$	therm. prod. NLSP decay	$\leftarrow \text{ cold/warm}$ $\leftarrow \text{ warm/hot}$ BBN	$ \widetilde{\tau}_1 \text{ prod. at colliders} + \widetilde{\tau}_1 \text{ collection} + \widetilde{\tau}_1 \text{ decay analysis} \hookrightarrow m_{\widetilde{a}} (?), f_a, T_R (?) $

Well-motivated DM Candidates

Well-motivated DM Candidates

candidate	identity	mass	interactions	production	constraints	experiments
a	axion (spin 0) NGoldst. boson PQ symm. break.	< 0.01 eV	$(p/f_a)^n$ extremely weak $f_a \gtrsim 6 \times 10^8 { m GeV}$	misalign. mech.	\leftarrow cold CMB	direct searches with microwave cavities $\hookrightarrow m_a, f_a, g_{a\gamma\gamma}$
${\widetilde \chi}^0_1$ LSP	lightest neutralino (spin 1/2) mixture of $\widetilde{B}, \widetilde{W}, \widetilde{H}^0_u, \widetilde{H}^0_d$	<i>♥</i> (100 GeV)	g, g', y_i weak $M_{ m W}$ ~ 100 GeV	therm. relic \widetilde{G} decay	$\leftarrow \text{ cold}$ $\leftarrow \text{ warm/hot}$ BBN	indirect searches direct searches collider searches $\hookrightarrow m_{\tilde{\chi}_1^0}, \tilde{\chi}_1^0$ coupl.
\tilde{G} LSP	gravitino (spin 3/2) superpartner of the graviton	eV-TeV	$(p/M_P)^n$ extremely weak $M_P = 2.4 \times 10^{18} \text{ GeV}$	therm. prod. NLSP decay	← cold ← warm BBN	$\widetilde{\tau}_1$ prod. at colliders + $\widetilde{\tau}_1$ collection + $\widetilde{\tau}_1$ decay analysis $\hookrightarrow m_{\widetilde{G}}, M_P$ (?), T_R
\widetilde{a} LSP	axino (spin 1/2) superpartner of the axion	eV–GeV	$(p/f_a)^n$ extremely weak $f_a \gtrsim 6 \times 10^8 { m GeV}$	therm. prod. NLSP decay	$\leftarrow \text{ cold/warm}$ $\leftarrow \text{ warm/hot}$ BBN	$ \widetilde{\tau}_1 \text{ prod. at colliders} + \widetilde{\tau}_1 \text{ collection} + \widetilde{\tau}_1 \text{ decay analysis} \hookrightarrow m_{\widetilde{a}} (?), f_a, T_R (?) $

Standard Thermal History of the Universe

The QCD Vacuum: Puzzles & Tools

- ? Chiral Symmetry Breaking
- ? Dynamical Mass Generation
- ? Color-Confinement
 - * Static $q\bar{q}$ Potential
 - * Flux-Tube Formation
 - * Casimir Scaling
- ? Hadron Structure
 - * van der Waals Potential
- ? High-Energy Scattering
 - * Hadronic Cross Sections
 - * Parton Distributions

- \square Lattice QCD
 - * Non-Pert. + Pert. (Cooling)
- \Box Instantons
 - * Non-Pert. & Topology
- $\hfill\square$ QCD Sum Rules & Condensates
 - * Pert. + Non-Pert.
 - * Power Corrections & OPE
- $\hfill\square$ Loop-Loop Correlation Model
 - * Pert. + Non-Pert.(SVM)
 - * Gluon Field Strength Correlator
 - * Lattice QCD Input
 - * Gaussian Approximation

Unified Description: Static Potentials & High-Energy Scattering

Wegner-Wilson Loops

$$W_r[C] = \widetilde{\mathsf{Tr}}_r \,\mathcal{P} \exp\left[-ig \oint_C dZ_\mu \,\mathcal{G}^a_\mu(Z) \,t_r^a\right]$$

• Ground State Energy of a Static Color-Dipole \rightarrow Static $q\bar{q}$ Potential $E_r(R) = -\lim_{T \to \infty} \frac{1}{T} \ln \langle W_r[C] \rangle$

 $\bullet\,$ Chromo-Field Distribution of a Color-Dipole $\rightarrow\,$ String Formation

$$\Delta G_{r\,\alpha\beta}^2(X) = -\lim_{R_P \to 0} \frac{1}{R_P^4} \frac{N_c}{\pi^2} \left[\frac{\langle W_r[C] P_{N_c}^{\alpha\beta}(X) \rangle}{\langle W_r[C] \rangle} - \langle P_{N_c}^{\alpha\beta}(X) \rangle \right]$$

• QCD van der Waals Potential between two Static Color-Dipoles

$$V_{r_1 r_2}(R, \vec{r_1}, \vec{r_2}) = -\lim_{T \to \infty} \frac{1}{T} \ln \frac{\langle W_{r_1}[C_1] W_{r_2}[C_2] \rangle}{\langle W_{r_1}[C_1] \rangle \langle W_{r_2}[C_2] \rangle}$$

• High-Energy Dipole-Dipole Scattering in the Eikonal Approximation $S_{r_1r_2}^M(s, \vec{b}_{\perp}, z_1, \vec{r}_1, z_2, \vec{r}_2) = \lim_{T \to \infty} \frac{\langle W_{r_1}[C_1] W_{r_2}[C_2] \rangle_M}{\langle W_{r_1}[C_1] \rangle_M \langle W_{r_2}[C_2] \rangle_M}$

$$\left\langle W_{r}[C] \right\rangle_{E} \left\langle W_{r_{1}}[C_{1}]W_{r_{2}}[C_{2}] \right\rangle_{E} \right.$$

$$\left. \text{Non-Abelian Stokes Theorem} \\ W_{r}[C] = \tilde{\mathrm{Tr}}_{r} \mathcal{P}_{S} \exp\left[-i\frac{g}{2}\int_{S}d\sigma_{\mu\nu}(Z)\mathcal{G}_{\mu\nu}^{a}(O,Z;C_{ZO})t_{r}^{a}\right] \right.$$

$$\left. \text{Trace Trick [Berger & Nachtmann '99]} \\ \tilde{\mathrm{Tr}}_{r_{1}}(A)\tilde{\mathrm{Tr}}_{r_{2}}(B) = \tilde{\mathrm{Tr}}_{r_{1}\otimes r_{2}}(A\otimes B) \\ \hat{\mathcal{G}}_{\mu\nu}(...) \coloneqq \left\{ \begin{array}{c} \mathcal{G}_{\mu\nu}^{a}(...)(t^{a}\otimes 1) & \text{for } X \in S_{1} \\ \mathcal{G}_{\mu\nu}^{a}(...)(1\otimes t^{b}) & \text{for } X \in S_{2} \end{array} \right. \right\}$$

$$\left. \text{Matrix Cumulant Expansion} \\ \left\langle \mathcal{P} \exp\left[-i\frac{g}{2}\int_{S}d\sigma(X)\hat{\mathcal{G}}(...)\right] \right\rangle_{E} = \exp\left[\sum_{n=1}^{\infty}\frac{1}{n!}(-i\frac{g}{2})^{n}\int d\sigma(X_{1})...d\sigma(X_{n})K_{n}(X_{1},...,X_{n})\right] \\ \left. \text{Gaussian Approximation} \\ \left. K_{2} = \left\langle \mathcal{P}_{S} \mathcal{G}(O,X_{1};C_{X_{1}})\mathcal{G}(O,X_{2};C_{X_{2}}) \right\rangle_{E} \right. \right\} \left. \hat{K}_{2} = \left\langle \mathcal{P}_{S} \hat{\mathcal{G}}(O,X_{1};C_{X_{1}})\hat{\mathcal{G}}(O,X_{2};C_{X_{2}}) \right\rangle_{E} \right\}$$

Frank Steffen (Max Planck Institute for Physics, Munich)

Perturbative and Non-Perturbative QCD Components

• Bilocal Gluon Field Strength Correlator
$$Z = X_1 - X_2$$
$$\left\langle \frac{g^2}{4\pi^2} \mathcal{G}^a_{\mu\nu}(O, X_1; C_{X_1O}) \mathcal{G}^b_{\rho\sigma}(O, X_2; C_{X_2O}) \right\rangle_E =: \frac{1}{4} \delta^{ab} \left(F^P_{\mu\nu\rho\sigma} + F^{NP_c}_{\mu\nu\rho\sigma} + F^{NP_{nc}}_{\mu\nu\rho\sigma} \right)$$

• Perturbative Gluon Exchange (P) with $m_G \neq 0$

$$F^{P}_{\mu\nu\rho\sigma} = \frac{g^{2}}{\pi^{2}} \frac{1}{2} \left[\frac{\partial}{\partial Z_{\nu}} \left(Z_{\sigma} \delta_{\mu\rho} - Z_{\rho} \delta_{\mu\sigma} \right) + \frac{\partial}{\partial Z_{\mu}} \left(Z_{\rho} \delta_{\nu\sigma} - Z_{\sigma} \delta_{\nu\rho} \right) \right] D_{P}(Z^{2}, \boldsymbol{m_{G}}^{2})$$

• Non-Pert. Stochastic Vacuum Model (NP) [Dosch '97, Dosch & Simonov '88] $F_{\mu\nu\rho\sigma}^{NP_{c}} = \frac{G_{2}\kappa}{3(N_{c}^{2}-1)} \left(\delta_{\mu\rho}\delta_{\nu\sigma} - \delta_{\mu\sigma}\delta_{\nu\rho}\right) D(Z^{2}/a^{2})$ $F_{\mu\nu\rho\sigma}^{NP_{nc}} = \frac{G_{2}(1-\kappa)}{3(N_{c}^{2}-1)} \frac{1}{2} \left[\frac{\partial}{\partial Z_{\nu}} \left(Z_{\sigma}\delta_{\mu\rho} - Z_{\rho}\delta_{\mu\sigma}\right) + \frac{\partial}{\partial Z_{\mu}} \left(Z_{\rho}\delta_{\nu\sigma} - Z_{\sigma}\delta_{\nu\rho}\right)\right] D_{1}(Z^{2}/a^{2})$

Static $q\bar{q}$ Potential = Color-Coulomb + Confinement

• String Tension $\sigma = C_2(r) \frac{\pi^3 G_2 \kappa}{48} \int_0^\infty dZ^2 D(Z^2, a^2)$ [Dosch '97, Dosch & Simonov '88]

Chromo-Field Distributions of Color-Dipoles

$$\begin{split} \Delta G_{r\,\alpha\beta}^{2}(X) &:= \left\langle \frac{g^{2}}{4\pi^{2}} \mathcal{G}_{\alpha\beta}^{a}(X) \mathcal{G}_{\alpha\beta}^{a}(X) \right\rangle_{W_{r}[C]} - \left\langle \frac{g^{2}}{4\pi^{2}} \mathcal{G}_{\alpha\beta}^{a}(X) \mathcal{G}_{\alpha\beta}^{a}(X) \right\rangle_{\text{vac}} \\ &= -\lim_{R_{P}\to 0} \frac{1}{R_{P}^{4}} \frac{N_{c}}{\pi^{2}} \left[\frac{\langle W_{r}[C] P_{N_{c}}^{\alpha\beta}(X) \rangle}{\langle W_{r}[C] \rangle} - \langle P_{N_{c}}^{\alpha\beta}(X) \rangle \right] = \frac{g^{2}}{4\pi^{2}} \begin{pmatrix} 0 & B_{z}^{2} & B_{y}^{2} & E_{x}^{2} \\ B_{z}^{2} & 0 & B_{x}^{2} & E_{y}^{2} \\ B_{y}^{2} & B_{x}^{2} & 0 & E_{z}^{2} \\ B_{x}^{2} & E_{y}^{2} & E_{z}^{2} & 0 \end{pmatrix} (X) \\ & \overline{\Delta G_{r\,\alpha\beta}^{2}(X)} = - C_{2}(r) \lim_{R_{P}\to 0} \frac{1}{R_{P}^{4}} \frac{1}{4\pi^{2}} \chi_{S_{P}S_{W}}^{2} \end{bmatrix} P_{N_{c}}^{14}(X) \int_{S_{P}} \left| X_{2} \right\rangle$$

- new derivation of SVM results [Dosch & Rüter '95]
- Chromo-Magnetic Fields $\vec{B}^2(X) = 0$
- Energy & Action Densities

$$\varepsilon_r(X) = \frac{1}{2} \left(-\vec{E}^2(X) + \vec{B}^2(X) \right) = -\frac{1}{2} \vec{E}^2(X)$$

$$s_r(X) = -\frac{1}{2} \left(\vec{E}^2(X) + \vec{B}^2(X) \right) = -\frac{1}{2} \vec{E}^2(X)$$

Low-Energy Theorems: Confining Non-Pert. Component

• Energy Sum Rule [Michael '86, Rothe '95]

$$E_r(R) = \int d^3 X \,\varepsilon_r(X) - \frac{1}{2} \frac{\beta(g)}{g} \int d^3 X \,s_r(X)$$

• Action Sum Rule [Michael '86, Dosch *et al.* '95]

$$E_r(R) + R \frac{\partial E_r(R)}{\partial R} = -\frac{2\beta(g)}{g} \int d^3 X \, s_r(X)$$

• Total Energy Stored in the Chromo-Fields

$$E_r^{\rm tot}(R) := \int \! d^3 X \varepsilon_r(X) = \frac{3}{4} E_r(R) - \frac{R}{4} \frac{\partial E_r(R)}{\partial R}$$

• Chromo-Magnetic to Chromo-Electric

$$Q(R) := \frac{\int d^3 X \vec{B}^2(X)}{\int d^3 X \vec{E}^2(X)} \xrightarrow{V_r = \sigma R} \frac{2 + \beta(g)/g}{2 - \beta(g)/g}$$

- strong coupling at $\mu = \mu_{NP}$
 - $g^2(\mu_{NP}) = 10.2$ $\alpha_s(\mu_{NP}) = 0.81$

$$eta(g) = \mu \partial g / \partial \mu ext{ at } \mu = \mu_{NP}$$
 $\left. \frac{\beta(g)}{g} \right|_{NP} = -2$

Perturbative Dipoles \longrightarrow **Confining Strings**

- 30 252015- 10 5 $^{-0}_{1}$ -0.50.50 0 0.5 -0.5

1

1.5 - 1

Y [fm]

 $R = 0.5 \, fm$

 $R = 1.5 \, fm$

X [fm]

 $g^2 \varepsilon_3(X_{\parallel}, X_{\perp}) \; [\text{GeV/fm}^3]$

Nachtmann 1991, Dosch et al. 1994

Functional Integral Approach to High-Energy Scattering

• S-Matrix

$$S_{ab\to cd} = \delta_{fi} + i(2\pi)^4 \delta^4 (P_c + P_d - P_a - P_b) T_{ab\to cd}$$

• *T*-Matrix Element

$$\begin{split} T_{ab\to cd}(s,t) &= 2is \int d^2 b_{\perp} e^{i\vec{q}_{\perp}\vec{b}_{\perp}} \int dz_1 d^2 r_1 \int dz_2 d^2 r_2 \\ &\times \psi_c^*(z_1,\vec{r}_1) \,\psi_d^*(z_2,\vec{r}_2) \left[1 - S_{DD}^M(s,\vec{b}_{\perp},z_1,\vec{r}_1,z_2,\vec{r}_2) \right] \psi_a(z_1,\vec{r}_1) \,\psi_b(z_2,\vec{r}_2) \end{split}$$

- Loop-Loop Correlation Function \rightarrow Dipole-Dipole Scattering $S_{DD}^{M}(s, \vec{b}_{\perp}, z_{1}, \vec{r}_{1}, z_{2}, \vec{r}_{2}) = \lim_{T \rightarrow \infty} \frac{\langle W[C_{1}]W[C_{2}] \rangle_{M}}{\langle W[C_{1}] \rangle_{M} \langle W[C_{2}] \rangle_{M}}$
- Wegner-Wilson Loop \rightarrow Color Dipole

$$W[C_{1,2}] = \frac{1}{N_c} \operatorname{Tr} \mathcal{P} \exp\left[-ig \oint_{C_{1,2}} dz^{\mu} \mathcal{G}_{\mu}(z)\right]$$

Unified Description of pp, γ^*p , and $\gamma\gamma$ Reactions

[Shoshi, FDS, Dosch & Pirner, hep-ph/0207287]

Perturbative and Non-Perturbative Dipole-Dipole Interactions

(c)

(d)

Shoshi, FDS, Dosch & Pirner, hep-ph/0207287

String Decomposition into Dipoles

• Mathematical Identity:

$$\left(-1 + {}_{1}F_{2}\left(-\frac{1}{2};\frac{1}{2},1;\frac{-k_{\perp}^{2}r_{D}^{2}}{4}\right)\right) = \int_{0}^{1} d\xi \frac{1}{\xi^{2}} \left(1 - J_{0}\left(|\vec{k}_{\perp}||\vec{r}_{D}|\xi\right)\right)$$

• String-Hadron Interaction \rightarrow Stringless Dipole-Hadron Interactions

• String of the Dipole has been shifted into the Hadron!

Frank Steffen (Max Planck Institute for Physics, Munich)

Comparison with Other Work

[Shoshi, FDS & Pirner, hep-ph/0202012]

Energy Dependence: Two Pomeron (Soft + Hard) Picture

• Two Pomeron P	$\text{icture} \qquad 0 \approx \epsilon^{NP} < \epsilon^P < 1$	
$\left(\chi^{NP}\right)^2 \rightarrow$	$\left(\chi^{NP}(s)\right)^2 := \left(\chi^{NP}\right)^2 \left(\frac{s}{s_0} \frac{\vec{r}_1^2 \vec{r}_2^2}{R_0^4}\right)^{\epsilon}$	SOFT
$\left(\chi^P ight)^2 \rightarrow$	$(\chi^P(s))^2 := (\chi^P)^2 \left(\frac{s}{s_0} \frac{\vec{r}_1^2 \vec{r}_2^2}{R_0^4}\right)^{\epsilon^P}$	HARD
• Scaling Variable	$s \vec{r_1} ^2 \propto rac{s}{Q^2} = rac{1}{x}$	

• *T*-Matrix Element

$$T(s,t) = 2is \int d^2 b_{\perp} e^{i\vec{q}_{\perp}\vec{b}_{\perp}} \int dz_1 d^2 r_1 \int dz_2 d^2 r_2 |\psi_1(z_1,\vec{r}_1)|^2 |\psi_2(z_2,\vec{r}_2)|^2 \\ \times \left[1 - \frac{2}{3}\cos\left(\frac{1}{3}\chi^{NP}(s)\right)\cos\left(\frac{1}{3}\chi^P(s)\right) - \frac{1}{3}\cos\left(\frac{2}{3}\chi^{NP}(s)\right)\cos\left(\frac{2}{3}\chi^P(s)\right)\right]$$

Unitarity Condition in Impact Parameter Space

Multiple Gluonic Interactions

Saturation Effects

Universal Energy Dependence for pp, γ^*p , and $\gamma\gamma$ Reactions

Total Cross Sections

$$\sigma_{ab}^{tot}(s) = \frac{1}{s} \operatorname{Im} T(s, t=0) = 2 \int d^2 b_{\perp} J_{ab}(s, |\vec{b}_{\perp}|)$$

Proton-Proton Scattering

• Profile Function

$$J_{pp}(s, |\vec{b}_{\perp}|) = \int dz_1 d^2 r_1 \int dz_2 d^2 r_2 |\psi_p(z_1, \vec{r}_1)|^2 |\psi_p(z_2, \vec{r}_2)|^2 \\ \times \left[1 - S_{DD}(s, \vec{b}_{\perp}, z_1, \vec{r}_1, z_2, \vec{r}_2)\right]$$

• Proton Opacity \searrow with $|\vec{b}_{\perp}| \nearrow$

• Maximum Opacity for
$$|\vec{b}_{\perp}| = 0$$
 at $\sqrt{s} \gtrsim 10^6 \,\text{GeV}$

$$J_{pp}^{max} = \int dz_1 d^2 r_1 \int dz_2 d^2 r_2 |\psi_p(z_1, \vec{r_1})|^2 |\psi_p(z_2, \vec{r_2})|^2 = 1$$

since $\int dz_i d^2 r_i |\psi_p(z_i, \vec{r_i})|^2 = 1$

• Transverse Proton Radius \nearrow with $s \nearrow$

The Differential Elastic Cross Section

$$\frac{d\sigma^{el}}{dt}(s,t) = \frac{1}{16\pi s^2} |T(s,t)|^2 = \frac{1}{4\pi} \left[\int d^2 b_{\perp} \, e^{i\vec{q}_{\perp}\vec{b}_{\perp}} \, J(s,|\vec{b}_{\perp}|) \right]^2$$

Conclusion

- The Model

 - * Perturbative & Non-Perturbative QCD Description \longleftrightarrow Lattice QCD Color-Coulomb Confinement
 - * Flux-Tube Formation: Perturbative Dipole \rightarrow Non-Perturbative Dipole
 - * Casimir Scaling \longleftrightarrow Gaussian Approximation
- Structure of Dipole-Dipole Scattering in $|\vec{k}_{\perp}|$ -Space
 - * Non-perturbative string-string interactions show a new structure different from the perturbative two-gluon exchange.
- Impact Parameter Profiles $J(s, |\vec{b}_{\perp}|)$
 - * Unitarity Bound = Black Disc Limit or Maximum Opacity
 - * Geometrical Picture of High Energy Reactions
- Comparison with Experimental Data for pp, γ^*p , and $\gamma\gamma$ Reactions
 - * Total Cross Sections
 - * Differential Elastic Cross Sections

Outlook

- ? Further Reactions
 - * Vector-Meson Production
 - * Diffractive Dissociation
 - * Nuclear Reactions

?? Multiple Loops

- * Sea Quarks in the Nucleon
- * Nuclear Interactions

* pA and AA Reactions

??? Dynamics \longrightarrow String Breaking

??? Quantum Evolution \longrightarrow Energy-Dependence

??? Path Dependence of the Bilocal Gluon Field Strenght Correlator

??? New Approaches to $\langle W_r[C] \rangle$ and $\langle W_{r_1}[C_1]W_{r_2}[C_2] \rangle$

Thank you, Hans-Jürgen

for the PhD research supervision and

the enjoyful/productive collaboration!!!