High－energy physics with particles carrying non－zero orbital angular momentum

Igor Ivanov

IFPA，University of Liège \＆Institute of Mathematics，Novosibirsk
＂30 years of strong interactions＂，Spa，7／04／2011
(1) Introduction
(2) Single-twisted cross section
(3) Double-twisted cross section
(4) Conclusions

Twisted states: scalar case

Solving free wave equation: monochromatic plane waves.
A plane wave is invariant under azimuthal rotations \rightarrow eigenfunction of the orbital angular momentum (OAM) operator $L_{z}=-i \partial / \partial \phi$ with zero OAM.

A non-plane wave configuration with ϕ-dependence $\exp (\operatorname{im} \phi)$ carries OAM $=\mathrm{m}$. This twisted state has helical wave fronts (=surfaces of equal phase).

Note: at $m \neq 0$, the phase is undefined along the z-axis, so the intensity must be zero.

Coordinate space

Plane wave solutions of the wave equation with definite ω, k_{z} and \mathbf{k} :

$$
|P W(\mathbf{k})\rangle=e^{-i \omega t+i k_{\mathbf{z}} z} \cdot e^{i \mathbf{k r}}
$$

Another type of solution in cylindrical coordinates: twisted state $|\kappa, m\rangle$:

$$
|\kappa, m\rangle=e^{-i \omega t+i k_{z} z} \cdot \psi_{\kappa m}(\mathbf{r})
$$

where

$$
\psi_{\kappa m}(\mathbf{r})=\frac{e^{i m \phi_{r}}}{\sqrt{2 \pi}} \sqrt{\kappa} J_{m}(\kappa r)
$$

Here $r=|\mathbf{r}|$ and κ is the conical momentum spread.

Momentum space

The twisted state $|\kappa, m\rangle$ is superposition of various plane waves $|P W(\mathbf{k})\rangle$ with fixed $|\mathbf{k}|=\kappa$ and all ϕ_{k} :

$$
|\kappa, m\rangle=e^{-i \omega t+i k_{z} z} \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) e^{i \mathbf{k r}}
$$

where

$$
a_{\kappa m}(\mathbf{k})=(-i)^{m} e^{i m \phi_{k}} \sqrt{2 \pi} \frac{\delta(|\mathbf{k}|-\kappa)}{\sqrt{\kappa}} .
$$

Twisted photons

For the photons consider a similar non-plane wave state:

$$
A_{\kappa m \Lambda}^{\mu}(\mathbf{r})=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) e_{\Lambda}^{\mu}(\mathbf{k})|P W(\mathbf{k})\rangle
$$

- The polarization vector does not factorize because it depends on \mathbf{k}.
- $e_{\Lambda}^{\mu}(\mathbf{k})$ corresponding to different PWs inside a twisted state don't even lie in the same plane.
- There exists ambiguity to be resolved of how to define relative phase between $e_{\Lambda}^{\mu}(\mathbf{k})$'s with different \mathbf{k}.

Exotic polarizations

Polarization states of a twisted photon can be very rich, including the exotic cases with polarization singularities.

In paraxial approximation can be described as a superposition of states with different m and λ 's.
this example: $|\lambda=+; m=0\rangle-|\lambda=-; m=+1\rangle$.

Experimental situation: photons

Laser beams with non-zero orbital angular momentum are well-known in the optics and are used in condensed matter physics, atomic physics, quantum information science.

Recently, it was suggested to use Compton backscattering to generate
high-energy photons carrying OAM [Jentschura, Serbo, PRL 106, 013001 (2011)]:

This upconvertion of optical twisted photons to multi-GeV energies seems feasible with today's technology.

Experimental situation: photons

Laser beams with non-zero orbital angular momentum are well-known in the optics and are used in condensed matter physics, atomic physics, quantum information science.

Recently, it was suggested to use Compton backscattering to generate high-energy photons carrying OAM [Jentschura, Serbo, PRL 106, 013001 (2011)]:

$$
e+\gamma_{\text {twisted }}^{\text {optical }} \rightarrow e+\gamma_{\text {twisted }}^{\text {high-energy }}
$$

This upconvertion of optical twisted photons to multi-GeV energies seems feasible with today's technology.

Experimental situation: electrons

In the last months: impressive progress in creating twisted electron states [Science, 331, 192 (2011)].

Electrons with $E=300 \mathrm{keV}$ and $m \sim 100$ were observed.
Twisted particles enter high-energy physics. What new insights can they bring?

Experimental situation: electrons

In the last months: impressive progress in creating twisted electron states [Science, 331, 192 (2011)].

Electrons with $E=300 \mathrm{keV}$ and $m \sim 100$ were observed.
Twisted particles enter high-energy physics.
What new insights can they bring?

Single twisted scattering

Now consider the same process but with one twisted particle:

$$
|\kappa, m\rangle+|P W(\mathbf{p})\rangle \rightarrow X
$$

The scattering matrix is

$$
S_{t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

Its square is

Single twisted scattering

Now consider the same process but with one twisted particle:

$$
|\kappa, m\rangle+|P W(\mathbf{p})\rangle \rightarrow X
$$

The scattering matrix is

$$
S_{t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

Its square is
$\left|S_{t w}\right|^{2}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) S_{P W}(\mathbf{k}, \mathbf{p}) S_{P W}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}\right)$

Single twisted scattering

Now consider the same process but with one twisted particle:

$$
|\kappa, m\rangle+|P W(\mathbf{p})\rangle \rightarrow X
$$

The scattering matrix is

$$
S_{t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

Its square is

$$
\begin{aligned}
& \left|S_{t w}\right|^{2}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) S_{P W}(\mathbf{k}, \mathbf{p}) S_{P W}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}\right) \\
& \propto \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) \delta^{(2)}\left(\mathbf{k}+\mathbf{p}-\mathbf{p}_{X}\right) \delta^{(2)}\left(\mathbf{k}^{\prime}+\mathbf{p}-\mathbf{p}_{X}\right) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}\right)
\end{aligned}
$$

Single twisted scattering

Now consider the same process but with one twisted particle:

$$
|\kappa, m\rangle+|P W(\mathbf{p})\rangle \rightarrow X
$$

The scattering matrix is

$$
S_{t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

Its square is

$$
\begin{gathered}
\left|S_{t w}\right|^{2}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) S_{P W}(\mathbf{k}, \mathbf{p}) S_{P W}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}\right) \\
\propto \int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{k}^{\prime}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) \delta^{(2)}(\mathbf{k}+\mathbf{p}-\mathbf{p}) \delta^{(2)}\left(\mathbf{k}^{\prime}+\mathbf{p}-\mathbf{p} \times\right) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}\right) \\
=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{4}} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^{*}(\mathbf{k}) \delta^{(2)}(\mathbf{k}+\mathbf{p}-\mathbf{p})|\mathcal{M}(\mathbf{k}, \mathbf{p})|^{2} . \\
\text { Igor Ivanov (ULg) } \\
\text { OAM in particle physics } \quad \text { "30 years of strong interactions", Spa, 7/04/2011 }
\end{gathered}
$$

The cross section can then be written as

$$
d \sigma_{t w}=\int \frac{d \phi_{k}}{2 \pi} d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}} .
$$

For paraxial scattering the ratio of fluxes is very close to 1 .

- An unusual quantity: $d \sigma_{P W}(\mathbf{k})$ averaged over initial angle and fixed final momenta
- The single-twisted cross section is m-independent: no smallness associated with OAM
- No smallness associated with small k: can be studied experimentally with today's technology.
- $d \sigma_{t w}$ is an incoherent sum of $d \sigma_{P W}(\mathbf{k})$. Initial coherence is lost via non-interfering final states.

The cross section can then be written as

$$
d \sigma_{t w}=\int \frac{d \phi_{k}}{2 \pi} d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}} .
$$

For paraxial scattering the ratio of fluxes is very close to 1 .

- An unusual quantity: $d \sigma_{P W}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is m-independent: no smallness associated with OAM.
- No smallness associated with small k: can be studied experimentally with today's technology.
- $d \sigma_{t w}$ is an incoherent sum of $d \sigma_{P W}(\mathbf{k})$. Initial coherence is lost via non-interfering final states.

The cross section can then be written as

$$
d \sigma_{t w}=\int \frac{d \phi_{k}}{2 \pi} d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}} .
$$

For paraxial scattering the ratio of fluxes is very close to 1 .

- An unusual quantity: $d \sigma_{P W}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is m-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- $d \sigma_{\text {tw }}$ is an incoherent sum of $d \sigma_{P W}(k)$. Initial coherence is lost via non-interfering final states.

The cross section can then be written as

$$
d \sigma_{t w}=\int \frac{d \phi_{k}}{2 \pi} d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}}
$$

For paraxial scattering the ratio of fluxes is very close to 1 .

- An unusual quantity: $d \sigma_{P W}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is m-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- $d \sigma_{t w}$ is an incoherent sum of $d \sigma_{P W}(\mathbf{k})$. Initial coherence is lost via non-interfering final states.

The cross section can then be written as

$$
d \sigma_{t w}=\int \frac{d \phi_{k}}{2 \pi} d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}}
$$

For paraxial scattering the ratio of fluxes is very close to 1 .

- An unusual quantity: $d \sigma_{P W}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is m-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- $d \sigma_{t w}$ is an incoherent sum of $d \sigma_{P W}(\mathbf{k})$. Initial coherence is lost via non-interfering final states.

Twisted state in superposition of different m

Example: $a|\kappa, m\rangle+a^{\prime}\left|\kappa, m^{\prime}\right\rangle$, with $|a|^{2}+\left|a^{\prime}\right|^{2}=1$.

$$
d \sigma=d \sigma_{t w}+2\left|a a^{\prime}\right| d \sigma_{t w}^{\Delta m} .
$$

where

$$
d \sigma_{t w}^{\Delta m}=\int \frac{d \phi_{k}}{2 \pi} \cos \left(\Delta m \phi_{k}+\alpha\right) d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}}
$$

with $\Delta m=m-m^{\prime}$ and α is the relative phase between the two complex coefficients a and a^{\prime}.

One gets a new tool: Fourier-analyzer of the plane wave cross section
w.r.t. initial azimuthal angle ϕ_{k}.

Twisted state in superposition of different m

Example: $a|\kappa, m\rangle+a^{\prime}\left|\kappa, m^{\prime}\right\rangle$, with $|a|^{2}+\left|a^{\prime}\right|^{2}=1$.

$$
d \sigma=d \sigma_{t w}+2\left|a a^{\prime}\right| d \sigma_{t w}^{\Delta m} .
$$

where

$$
d \sigma_{t w}^{\Delta m}=\int \frac{d \phi_{k}}{2 \pi} \cos \left(\Delta m \phi_{k}+\alpha\right) d \sigma_{P W}(\mathbf{k}) \cdot \frac{j_{P W}(\mathbf{k})}{j_{t w}}
$$

with $\Delta m=m-m^{\prime}$ and α is the relative phase between the two complex coefficients a and a^{\prime}.

One gets a new tool: Fourier-analyzer of the plane wave cross section w.r.t. initial azimuthal angle ϕ_{k}.

A novel way to probe composite particles?

Generic example: elastic scattering of a probe particle by a target particle. $k+p \rightarrow k^{\prime}+p^{\prime}$; transverse momentum transfer $\mathbf{q}=\mathbf{k}^{\prime}-\mathbf{k}$.

The target particle has an internal structure (\rightarrow formfactor) and can have transverse polarization (\rightarrow preferred direction \mathbf{n}).

A toy model for the cross-section dependence on q :

How we do extract A, B, C ?

A novel way to probe composite particles?

Generic example: elastic scattering of a probe particle by a target particle. $k+p \rightarrow k^{\prime}+p^{\prime}$; transverse momentum transfer $\mathbf{q}=\mathbf{k}^{\prime}-\mathbf{k}$.

The target particle has an internal structure (\rightarrow formfactor) and can have transverse polarization (\rightarrow preferred direction \mathbf{n}).

A toy model for the cross-section dependence on \mathbf{q} :

$$
\begin{gathered}
d \sigma\left(\mathbf{k}, \mathbf{k}^{\prime}\right) \propto A+B \cdot \mathbf{q}^{2}+C \cdot(\mathbf{q n})^{2}, \\
\mathbf{q}^{2}=\mathbf{k}^{2}+\mathbf{k}^{\prime 2}-2 k k^{\prime} \cos \left(\phi_{k}-\phi_{k}^{\prime}\right) \\
(\mathbf{q n})=k^{\prime} \cos \left(\phi_{k}^{\prime}-\phi_{n}\right)-k \cos \left(\phi_{k}-\phi_{n}\right) .
\end{gathered}
$$

How we do extract A, B, C ?

A novel way to probe composite particles?

Usual way: partial wave analysis requires measuring x-section at different \mathbf{k}^{\prime}, fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_{k} can be performed at fixed \mathbf{k}^{\prime} by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow

A novel way to probe composite particles?

Usual way: partial wave analysis requires measuring x-section at different \mathbf{k}^{\prime}, fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_{k} can be performed at fixed \mathbf{k}^{\prime} by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow

A novel way to probe composite particles?

Usual way: partial wave analysis requires measuring x-section at different \mathbf{k}^{\prime}, fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_{k} can be performed at fixed \mathbf{k}^{\prime} by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow complementary tools.

Colliding two twisted particles

$$
|\kappa, m\rangle+|\eta, n\rangle \rightarrow X .
$$

The scattering matrix is

$$
S_{2 t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{p}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

The square $\left|S_{2 t w}\right|^{2}$ contains

Kinematical restrictions: $|\mathbf{k}|=\kappa=\left|\mathbf{k}^{\prime}\right|$ and $|\mathbf{p}|=\eta=\left|\mathbf{p}^{\prime}\right|$; as well as

Colliding two twisted particles

$$
|\kappa, m\rangle+|\eta, n\rangle \rightarrow X .
$$

The scattering matrix is

$$
S_{2 t w}=\int \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{d^{2} \mathbf{p}}{(2 \pi)^{2}} a_{\kappa m}(\mathbf{k}) a_{\eta \eta}(\mathbf{p}) S_{P W}(\mathbf{k}, \mathbf{p})
$$

The square $\left|S_{2 t w}\right|^{2}$ contains

$$
\begin{aligned}
& \int \frac{d^{2} \mathbf{k} d^{2} \mathbf{p} d^{2} \mathbf{k}^{\prime} d^{2} \mathbf{p}^{\prime}}{(2 \pi)^{8}} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) a_{\kappa m}^{*}\left(\mathbf{k}^{\prime}\right) a_{\eta n}^{*}\left(\mathbf{p}^{\prime}\right) \\
& \times \delta^{(2)}\left(\mathbf{k}+\mathbf{p}-\mathbf{p}_{X}\right) \delta^{(2)}\left(\mathbf{k}^{\prime}+\mathbf{p}^{\prime}-\mathbf{p}_{X}\right) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}^{\prime}\right)
\end{aligned}
$$

Kinematical restrictions: $|\mathbf{k}|=\kappa=\left|\mathbf{k}^{\prime}\right|$ and $|\mathbf{p}|=\eta=\left|\mathbf{p}^{\prime}\right|$; as well as $\mathbf{k}+\mathbf{p}=\mathbf{p}_{X}=\mathbf{k}^{\prime}+\mathbf{p}^{\prime}$.

For each \mathbf{p}_{X} there are two kinematical configurations:

In the product $\mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}^{\prime}\right)$ one can have either $\mathbf{k}^{\prime}=\mathbf{k}, \mathbf{p}^{\prime}=\mathbf{p}$, or

$$
\mathbf{k}^{\prime}=\mathbf{k}^{*} \equiv-\mathbf{k}+2\left(\mathbf{k} \mathbf{n}_{X}\right) \mathbf{n}_{X}, \quad \mathbf{p}^{\prime}=\mathbf{p}^{*} \equiv-\mathbf{p}+2\left(\mathbf{p} \mathbf{n}_{X}\right) \mathbf{n}_{X}
$$

where $\mathbf{n}_{X} \equiv \mathbf{p}_{X} /\left|\mathbf{p}_{X}\right|$.
These two possibilities interfere. Therefore, the cross section will depend not only on $|\mathcal{M}(\mathbf{k}, \mathbf{p})|^{2}$ but also on $\mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{*}, \mathbf{p}^{*}\right)$

One can access the autocorrelation function of the amplitude

For each \mathbf{p}_{X} there are two kinematical configurations:

In the product $\mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{\prime}, \mathbf{p}^{\prime}\right)$ one can have either $\mathbf{k}^{\prime}=\mathbf{k}, \mathbf{p}^{\prime}=\mathbf{p}$, or

$$
\mathbf{k}^{\prime}=\mathbf{k}^{*} \equiv-\mathbf{k}+2\left(\mathbf{k} \mathbf{n}_{X}\right) \mathbf{n}_{X}, \quad \mathbf{p}^{\prime}=\mathbf{p}^{*} \equiv-\mathbf{p}+2\left(\mathbf{p} \mathbf{n}_{X}\right) \mathbf{n}_{X}
$$

where $\mathbf{n}_{X} \equiv \mathbf{p}_{X} /\left|\mathbf{p}_{X}\right|$.
These two possibilities interfere. Therefore, the cross section will depend not only on $|\mathcal{M}(\mathbf{k}, \mathbf{p})|^{2}$ but also on $\mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{*}, \mathbf{p}^{*}\right)$.
One can access the autocorrelation function of the amplitude.

The cross section is

$$
d \sigma_{2 t w}=\frac{1}{8 \pi \sin \left(\delta_{k}+\delta_{p}\right)} \int d \phi_{k} d \phi_{P} \frac{j_{P W}(\mathbf{k}, \mathbf{p})}{j_{2 t w}}\left[d \sigma_{P W}(\mathbf{k}, \mathbf{p})+d \sigma_{P W}^{\prime}(\mathbf{k}, \mathbf{p})\right]
$$

where

$$
\begin{aligned}
d \sigma_{P W}^{\prime}(\mathbf{k}, \mathbf{p}) & =\frac{(2 \pi)^{4} \delta\left(E_{i}-E_{f}\right) \delta\left(p_{z i}-p_{z f}\right) \delta^{(2)}\left(\mathbf{k}+\mathbf{p}-\mathbf{p}_{X}\right)}{4 E_{p} \omega j_{P W}} \\
& \times \operatorname{Re}\left[e^{2 i m\left(\phi_{k}-\phi_{X}\right)+2 i n\left(\phi_{p}-\phi_{X}\right)} \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^{*}\left(\mathbf{k}^{*}, \mathbf{p}^{*}\right)\right] d \Gamma_{X}
\end{aligned}
$$

and

$$
\delta_{k}=\arccos \left(\frac{\mathbf{p}_{X}^{2}+\kappa^{2}-\eta^{2}}{2\left|\mathbf{p}_{X}\right| \kappa}\right), \quad \delta_{p}=\arccos \left(\frac{\mathbf{p}_{X}^{2}-\kappa^{2}+\eta^{2}}{2\left|\mathbf{p}_{X}\right| \eta}\right) .
$$

The double-twisted cross section is m, n-dependent and stays finite at small κ, η.

Conclusions

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.

Conclusions

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel nhysics onnortunities offered by this new degree of freedom are to be studied

Conclusions

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
-

freedom are to be studied

Conclusions

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.

