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Twisted states: scalar case

Solving free wave equation: monochromatic plane waves.
A plane wave is invariant under azimuthal rotations → eigenfunction of the
orbital angular momentum (OAM) operator Lz = −i∂/∂φ with zero OAM.

A non-plane wave configuration with φ-dependence exp(imφ) carries OAM
= m. This twisted state has helical wave fronts (=surfaces of equal phase).

Note: at m 6= 0, the phase is undefined along the z-axis, so the intensity
must be zero.
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Coordinate space

Plane wave solutions of the wave equation with definite ω, kz and k:

|PW (k)〉 = e−iωt+ikzz · e ikr .

Another type of solution in cylindrical coordinates: twisted state |κ,m〉:

|κ,m〉 = e−iωt+ikzz · ψκm(r) ,

where

ψκm(r) =
e imφr√

2π

√
κJm(κr) .

Here r = |r| and κ is the conical momentum spread.
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Momentum space

The twisted state |κ,m〉 is superposition of various plane waves |PW (k)〉
with fixed |k| = κ and all φk :

|κ,m〉 = e−iωt+ikzz

∫
d2k

(2π)2
aκm(k)e ikr ,

where

aκm(k) = (−i)me imφk
√

2π
δ(|k| − κ)√

κ
.

Igor Ivanov (ULg) OAM in particle physics “30 years of strong interactions”, Spa, 7/04/2011 5/18



Introduction Single-twisted x-section Double-twisted x-section Conclusions

Twisted photons

For the photons consider a similar non-plane wave state:

AµκmΛ(r) =

∫
d2k

(2π)2
aκm(k)eµΛ (k)|PW (k)〉 ,

The polarization vector does not factorize because it depends on k.

eµΛ (k) corresponding to different PWs inside a twisted state don’t
even lie in the same plane.

There exists ambiguity to be resolved of how to define relative phase
between eµΛ (k)’s with different k.
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Exotic polarizations

Polarization states of a twisted photon can be very rich, including the
exotic cases with polarization singularities.

In paraxial approximation can be described as a superposition of states
with different m and λ’s.
this example: |λ = +;m = 0〉 − |λ = −;m = +1〉.
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Experimental situation: photons

Laser beams with non-zero orbital angular momentum are well-known in
the optics and are used in condensed matter physics, atomic physics,
quantum information science.

Recently, it was suggested to use Compton backscattering to generate
high-energy photons carrying OAM [Jentschura, Serbo, PRL 106, 013001
(2011)]:

e + γopticaltwisted → e + γhigh−energytwisted .

This upconvertion of optical twisted photons to multi-GeV energies seems
feasible with today’s technology.
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Experimental situation: electrons

In the last months: impressive progress in creating twisted electron states
[Science, 331, 192 (2011)].

Electrons with E = 300 keV and m ∼ 100 were observed.

Twisted particles enter high-energy physics.
What new insights can they bring?
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Single twisted scattering

Now consider the same process but with one twisted particle:

|κ,m〉+ |PW (p)〉 → X .

The scattering matrix is

Stw =

∫
d2k

(2π)2
aκm(k)SPW (k,p) .

Its square is

|Stw |2 =

∫
d2k

(2π)2

d2k′

(2π)2
aκm(k)a∗κm(k′)SPW (k,p)S∗PW (k′,p)

∝
∫

d2k

(2π)2

d2k′

(2π)2
aκm(k)a∗κm(k′)δ(2)(k + p− pX )δ(2)(k′ + p− pX )M(k,p)M∗(k′,p)

=

∫
d2k

(2π)4
aκm(k)a∗κm(k)δ(2)(k + p− pX )|M(k,p)|2 .
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The cross section can then be written as

dσtw =

∫
dφk
2π

dσPW (k) · jPW (k)

jtw
.

For paraxial scattering the ratio of fluxes is very close to 1.

An unusual quantity: dσPW (k) averaged over initial angle and fixed
final momenta.

The single-twisted cross section is m-independent: no smallness
associated with OAM.

No smallness associated with small κ: can be studied experimentally
with today’s technology.

dσtw is an incoherent sum of dσPW (k). Initial coherence is lost via
non-interfering final states.
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Twisted state in superposition of different m

Example: a|κ,m〉+ a′|κ,m′〉, with |a|2 + |a′|2 = 1.

dσ = dσtw + 2|aa′|dσ∆m
tw .

where

dσ∆m
tw =

∫
dφk
2π

cos(∆m φk + α) dσPW (k) · jPW (k)

jtw
,

with ∆m = m −m′ and α is the relative phase between the two complex
coefficients a and a′.

One gets a new tool: Fourier-analyzer of the plane wave cross section
w.r.t. initial azimuthal angle φk .
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A novel way to probe composite particles?

Generic example: elastic scattering of a probe particle by a target particle.
k + p → k ′ + p′; transverse momentum transfer q = k′ − k.

The target particle has an internal structure (→ formfactor) and can have
transverse polarization (→ preferred direction n).

A toy model for the cross-section dependence on q:

dσ(k, k′) ∝ A + B · q2 + C · (qn)2 ,

q2 = k2 + k′2 − 2kk ′ cos(φk − φ′k) ,

(qn) = k ′ cos(φ′k − φn)− k cos(φk − φn) .

How we do extract A, B, C?
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A novel way to probe composite particles?

Usual way: partial wave analysis requires measuring x-section at different
k′, fitting the angular distribution and extracting different spherical
harmonics.

Using twisted states with adjustable ∆m: Fourier analysis w.r.t. φk can be
performed at fixed k′ by comparing several initial states.

Different requirements for the detectors → different systematics →
complementary tools.
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Colliding two twisted particles

|κ,m〉+ |η, n〉 → X .

The scattering matrix is

S2tw =

∫
d2k

(2π)2

d2p

(2π)2
aκm(k)aηn(p)SPW (k,p) .

The square |S2tw |2 contains∫
d2k d2p d2k′ d2p′

(2π)8
aκm(k)aηn(p)a∗κm(k′)a∗ηn(p′)

× δ(2)(k + p− pX )δ(2)(k′ + p′ − pX )M(k,p)M∗(k′,p′) .

Kinematical restrictions: |k| = κ = |k′| and |p| = η = |p′|; as well as
k + p = pX = k′ + p′.
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For each pX there are two kinematical configurations:

In the product M(k,p)M∗(k′,p′) one can have either k′ = k, p′ = p, or

k′ = k∗ ≡ −k + 2(knX )nX , p′ = p∗ ≡ −p + 2(pnX )nX ,

where nX ≡ pX/|pX |.

These two possibilities interfere. Therefore, the cross section will depend
not only on |M(k,p)|2 but also on M(k,p)M∗(k∗,p∗).

One can access the autocorrelation function of the amplitude.
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The cross section is

dσ2tw =
1

8π sin(δk + δp)

∫
dφkdφp

jPW (k,p)

j2tw
[dσPW (k,p) + dσ′PW (k,p)] ,

where

dσ′PW (k,p) =
(2π)4δ(Ei − Ef )δ(pzi − pzf )δ(2)(k + p− pX )

4EpωjPW

× Re
[
e2im(φk−φX )+2in(φp−φX )M(k,p)M∗(k∗,p∗)

]
dΓX .

and

δk = arccos

(
p2
X + κ2 − η2

2|pX |κ

)
, δp = arccos

(
p2
X − κ2 + η2

2|pX |η

)
.

The double-twisted cross section is m, n-dependent and stays finite at small κ, η.
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Conclusions

Many effects described are observable with today’s technology.

Fourier transform w.r.t. initial azimuthal angle might emerge as a
new tool, complementary to the standard PWA.

Double-twisted x-section is sensitive to the autocorrelation function,
which is inaccessible in plane wave collisions.

Plenty of novel physics opportunities offered by this new degree of
freedom are to be studied.
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