High-energy physics with particles carrying non-zero orbital angular momentum

Igor Ivanov

IFPA, University of Liège & Institute of Mathematics, Novosibirsk

"30 years of strong interactions", Spa, 7/04/2011

(日) (문) (문) (문) (문)

うくで

2 Single-twisted cross section

3 Double-twisted cross section

Introduction •000000	Single-twisted x-section	Double-twisted x-section	Conclusions O
Twisted state	es: scalar case		

Solving free wave equation: monochromatic plane waves.

A plane wave is invariant under azimuthal rotations \rightarrow eigenfunction of the orbital angular momentum (OAM) operator $L_z = -i\partial/\partial\phi$ with zero OAM.

A non-plane wave configuration with ϕ -dependence $\exp(im\phi)$ carries OAM = m. This twisted state has helical wave fronts (=surfaces of equal phase).

Note: at $m \neq 0$, the phase is undefined along the *z*-axis, so the intensity must be zero.

Ma C

Introduction 000000	Single-twisted x-section	Double-twisted x-section	Conclusions
Coordinate sp	bace		

Plane wave solutions of the wave equation with definite ω , k_z and **k**:

$$|PW(\mathbf{k})\rangle = e^{-i\omega t + ik_z z} \cdot e^{i\mathbf{k}\mathbf{r}}$$

Another type of solution in cylindrical coordinates: twisted state $|\kappa, m\rangle$:

$$|\kappa, m\rangle = e^{-i\omega t + ik_z z} \cdot \psi_{\kappa m}(\mathbf{r}),$$

where

$$\psi_{\kappa m}(\mathbf{r}) = \frac{e^{im\phi_r}}{\sqrt{2\pi}}\sqrt{\kappa}J_m(\kappa r)\,.$$

Here $r = |\mathbf{r}|$ and κ is the conical momentum spread.

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
000000			
Momentum s	pace		

The twisted state $|\kappa, m\rangle$ is superposition of various plane waves $|PW(\mathbf{k})\rangle$ with fixed $|\mathbf{k}| = \kappa$ and all ϕ_k :

$$|\kappa,m
angle=e^{-i\omega t+ik_z z}\intrac{d^2{f k}}{(2\pi)^2}a_{\kappa m}({f k})e^{i{f k}{f r}}\,,$$

where

$$a_{\kappa m}(\mathbf{k}) = (-i)^m e^{im\phi_k} \sqrt{2\pi} \frac{\delta(|\mathbf{k}| - \kappa)}{\sqrt{\kappa}}.$$

SQC

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions O
Twisted phot	ons		

For the photons consider a similar non-plane wave state:

$$\mathcal{A}^{\mu}_{\kappa m \Lambda}(\mathbf{r}) = \int rac{d^2 \mathbf{k}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) e^{\mu}_{\Lambda}(\mathbf{k}) |PW(\mathbf{k})
angle \,,$$

- The polarization vector does not factorize because it depends on **k**.
- $e^{\mu}_{\Lambda}(\mathbf{k})$ corresponding to different PWs inside a twisted state don't even lie in the same plane.
- There exists ambiguity to be resolved of how to define relative phase between e^μ_Λ(k)'s with different k.

Introduction ○○○○●○○	Single-twisted x-section	Double-twisted x-section	Conclusions ○
Exotic polariz	ations		

Polarization states of a twisted photon can be very rich, including the exotic cases with polarization singularities.

In paraxial approximation can be described as a superposition of states with different *m* and λ 's.

this example: $|\lambda = +; m = 0\rangle - |\lambda = -; m = +1\rangle$.

Introduction 0000000	Single-twisted x-sect	tion	Double-twisted x-section	Conclusions O
Experimental	situation:	photons		

Laser beams with non-zero orbital angular momentum are well-known in the optics and are used in condensed matter physics, atomic physics, quantum information science.

Recently, it was suggested to use Compton backscattering to generate high-energy photons carrying OAM [*Jentschura, Serbo, PRL 106, 013001 (2011)*]:

$$e + \gamma_{twisted}^{optical} \rightarrow e + \gamma_{twisted}^{high-energy}$$
 .

This upconvertion of optical twisted photons to multi-GeV energies seems feasible with today's technology.

Introduction 00000€0	Single-twisted x-section	on	Double-twisted x-section	Conclusions O
Experimental	situation:	photons		

Laser beams with non-zero orbital angular momentum are well-known in the optics and are used in condensed matter physics, atomic physics, quantum information science.

Recently, it was suggested to use Compton backscattering to generate high-energy photons carrying OAM [*Jentschura, Serbo, PRL 106, 013001 (2011)*]:

$$e + \gamma_{twisted}^{optical}
ightarrow e + \gamma_{twisted}^{high-energy}$$
 .

This upconvertion of optical twisted photons to multi-GeV energies seems feasible with today's technology.

Introduction ○○○○○○●	Single-twisted x-section	Double-twisted x-section	Conclusions O
Experimental	situation: electron	S	

In the last months: impressive progress in creating twisted electron states [Science, 331, 192 (2011)].

Electrons with E = 300 keV and $m \sim 100$ were observed.

Twisted particles enter high-energy physics. What new insights can they bring?

Ma C

Introduction ○○○○○○●	Single-twisted x-section	Double-twisted x-section	Conclusions O
Experimental	situation: electron	S	

In the last months: impressive progress in creating twisted electron states [Science, 331, 192 (2011)].

Electrons with E = 300 keV and $m \sim 100$ were observed.

Twisted particles enter high-energy physics. What new insights can they bring?

Introduction	Single-twisted x-section ●○○○○	Double-twisted x-section	Conclusions O
Single twisted	scattering		

 $|\kappa, \mathbf{m}\rangle + |PW(\mathbf{p})\rangle \rightarrow X$.

The scattering matrix is

$$S_{tw} = \int rac{d^2 \mathbf{k}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) S_{PW}(\mathbf{k},\mathbf{p}) \,.$$

Its square is

$$\begin{split} |S_{tw}|^2 &= \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') S_{PW}(\mathbf{k}, \mathbf{p}) S_{PW}^*(\mathbf{k}', \mathbf{p}) \\ &\propto \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p} - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}) \\ &= \int \frac{d^2 \mathbf{k}}{(2\pi)^4} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}) \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) |\mathcal{M}(\mathbf{k}, \mathbf{p})|^2 \,. \end{split}$$

< n

Э

-∢ ≣ ▶

990

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
0000000	●○○○○		O
Single twisted	scattering		

 $|\kappa, \mathbf{m}\rangle + |PW(\mathbf{p})\rangle \rightarrow X$.

The scattering matrix is

$$S_{tw} = \int rac{d^2 \mathbf{k}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) S_{PW}(\mathbf{k},\mathbf{p}) \,.$$

Its square is

$$\begin{split} |S_{tw}|^2 &= \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') S_{PW}(\mathbf{k}, \mathbf{p}) S_{PW}^*(\mathbf{k}', \mathbf{p}) \\ &\propto \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p} - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}) \\ &= \int \frac{d^2 \mathbf{k}}{(2\pi)^4} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}) \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) |\mathcal{M}(\mathbf{k}, \mathbf{p})|^2 \,. \end{split}$$

Image: Ima

590

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
0000000	●○○○○		O
Single twisted	scattering		

 $|\kappa, m\rangle + |PW(\mathbf{p})\rangle \rightarrow X$.

The scattering matrix is

$$S_{tw} = \int rac{d^2 \mathbf{k}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) S_{PW}(\mathbf{k},\mathbf{p}) \,.$$

Its square is

$$\begin{split} |S_{tw}|^2 &= \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') S_{PW}(\mathbf{k}, \mathbf{p}) S_{PW}^*(\mathbf{k}', \mathbf{p}) \\ &\propto \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p} - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}) \\ &= \int \frac{d^2 \mathbf{k}}{(2\pi)^4} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}) \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) |\mathcal{M}(\mathbf{k}, \mathbf{p})|^2 \,. \end{split}$$

Image: Ima

590

Introduction	Single-twisted x-section ●○○○○	Double-twisted x-section	Conclusions O
Single twisted	scattering		

 $|\kappa, \mathbf{m}\rangle + |PW(\mathbf{p})\rangle \rightarrow X$.

The scattering matrix is

$$S_{tw} = \int rac{d^2 \mathbf{k}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) S_{PW}(\mathbf{k},\mathbf{p}) \,.$$

Its square is

$$\begin{split} |S_{tw}|^2 &= \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') S_{PW}(\mathbf{k}, \mathbf{p}) S_{PW}^*(\mathbf{k}', \mathbf{p}) \\ &\propto \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{k}'}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}') \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p} - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}) \\ &= \int \frac{d^2 \mathbf{k}}{(2\pi)^4} a_{\kappa m}(\mathbf{k}) a_{\kappa m}^*(\mathbf{k}) \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) |\mathcal{M}(\mathbf{k}, \mathbf{p})|^2 \,. \end{split}$$

Image: Ima

590

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
	0000		

$$d\sigma_{tw} = \int \frac{d\phi_k}{2\pi} \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}}$$

For paraxial scattering the ratio of fluxes is very close to 1.

- An unusual quantity: *d*σ_{PW}(**k**) averaged over initial angle and fixed final momenta.
- The single-twisted cross section is *m*-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- *d*σ_{tw} is an incoherent sum of *d*σ_{PW}(**k**). Initial coherence is lost via non-interfering final states.

Ma C

11/18

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
	0000		

$$d\sigma_{tw} = \int \frac{d\phi_k}{2\pi} \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}}$$

For paraxial scattering the ratio of fluxes is very close to 1.

- An unusual quantity: $d\sigma_{PW}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is *m*-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- dσ_{tw} is an incoherent sum of dσ_{PW}(k). Initial coherence is lost via non-interfering final states.

Ma C

11/18

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
	0000		

$$d\sigma_{tw} = \int \frac{d\phi_k}{2\pi} \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}}$$

For paraxial scattering the ratio of fluxes is very close to 1.

- An unusual quantity: $d\sigma_{PW}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is *m*-independent: no smallness associated with OAM.
- No smallness associated with small κ : can be studied experimentally with today's technology.
- *d*σ_{tw} is an incoherent sum of *d*σ_{PW}(**k**). Initial coherence is lost via non-interfering final states.

ッへで 11/18

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
	0000		

$$d\sigma_{tw} = \int \frac{d\phi_k}{2\pi} \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}}$$

For paraxial scattering the ratio of fluxes is very close to 1.

- An unusual quantity: $d\sigma_{PW}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is *m*-independent: no smallness associated with OAM.
- No smallness associated with small κ: can be studied experimentally with today's technology.
- *d*σ_{tw} is an incoherent sum of *d*σ_{PW}(**k**). Initial coherence is lost via non-interfering final states.

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
	0000		

$$d\sigma_{tw} = \int \frac{d\phi_k}{2\pi} \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}}$$

For paraxial scattering the ratio of fluxes is very close to 1.

- An unusual quantity: $d\sigma_{PW}(\mathbf{k})$ averaged over initial angle and fixed final momenta.
- The single-twisted cross section is *m*-independent: no smallness associated with OAM.
- No smallness associated with small κ: can be studied experimentally with today's technology.
- *d*σ_{tw} is an incoherent sum of *d*σ_{PW}(**k**). Initial coherence is lost via non-interfering final states.

SQA

11/18

Introduction	Single-twisted x-section ○○●○○	Double-twisted x-section	Conclusions O
Twisted st	ate in superposition	n of different <i>m</i>	

Example:
$$a|\kappa, m\rangle + a'|\kappa, m'\rangle$$
, with $|a|^2 + |a'|^2 = 1$.

$$d\sigma = d\sigma_{tw} + 2|aa'|d\sigma_{tw}^{\Delta m}.$$

where

$$d\sigma_{tw}^{\Delta m} = \int \frac{d\phi_k}{2\pi} \cos(\Delta m \phi_k + \alpha) \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}} \, ,$$

with $\Delta m = m - m'$ and α is the relative phase between the two complex coefficients *a* and *a'*.

One gets a new tool: Fourier-analyzer of the plane wave cross section w.r.t. initial azimuthal angle ϕ_k .

Introduction	Single-twisted x-section ○○●○○	Double-twisted x-section	Conclusions O
Twisted st	ate in superposition	n of different <i>m</i>	

Example:
$$a|\kappa, m\rangle + a'|\kappa, m'\rangle$$
, with $|a|^2 + |a'|^2 = 1$.

$$d\sigma = d\sigma_{tw} + 2|aa'|d\sigma_{tw}^{\Delta m}.$$

where

$$d\sigma_{tw}^{\Delta m} = \int \frac{d\phi_k}{2\pi} \cos(\Delta m \phi_k + \alpha) \, d\sigma_{PW}(\mathbf{k}) \cdot \frac{j_{PW}(\mathbf{k})}{j_{tw}} \, ,$$

with $\Delta m = m - m'$ and α is the relative phase between the two complex coefficients *a* and *a'*.

One gets a new tool: Fourier-analyzer of the plane wave cross section w.r.t. initial azimuthal angle ϕ_k .

Introduction	Single-twisted x-section ○○○●○	Double-twisted x-section	Conclusions O
A novel way t	o probe composite	narticles?	

Generic example: elastic scattering of a probe particle by a target particle. $k + p \rightarrow k' + p'$; transverse momentum transfer $\mathbf{q} = \mathbf{k}' - \mathbf{k}$.

The target particle has an internal structure (\rightarrow formfactor) and can have transverse polarization (\rightarrow preferred direction **n**).

A toy model for the cross-section dependence on **q**:

$$d\sigma(\mathbf{k}, \mathbf{k}') \propto A + B \cdot \mathbf{q}^2 + C \cdot (\mathbf{qn})^2,$$

$$\mathbf{q}^2 = \mathbf{k}^2 + \mathbf{k}'^2 - 2kk' \cos(\phi_k - \phi'_k),$$

$$(\mathbf{qn}) = k' \cos(\phi'_k - \phi_n) - k \cos(\phi_k - \phi_n).$$

How we do extract A, B, C?

Introduction	Single-twisted x-section 000●0	Double-twisted x-section	Conclusions O
A novel wav t	o probe composite	particles?	

Generic example: elastic scattering of a probe particle by a target particle. $k + p \rightarrow k' + p'$; transverse momentum transfer $\mathbf{q} = \mathbf{k}' - \mathbf{k}$.

The target particle has an internal structure (\rightarrow formfactor) and can have transverse polarization (\rightarrow preferred direction **n**).

A toy model for the cross-section dependence on **q**:

$$d\sigma(\mathbf{k}, \mathbf{k}') \propto A + B \cdot \mathbf{q}^2 + C \cdot (\mathbf{qn})^2,$$

$$\mathbf{q}^2 = \mathbf{k}^2 + \mathbf{k}'^2 - 2kk' \cos(\phi_k - \phi'_k),$$

$$(\mathbf{qn}) = k' \cos(\phi'_k - \phi_n) - k \cos(\phi_k - \phi_n).$$

How we do extract A, B, C?

Introduction	Single-twisted x-section ○○○○●	Double-twisted x-section	Conclusions O
A novel way t	o probe composite	particles?	

Usual way: partial wave analysis requires measuring x-section at different ${\bf k}',$ fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_k can be performed at fixed \mathbf{k}' by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow complementary tools.

Ma C

14/18

Introduction 0000000	Single-twisted x-section	Double-twisted x-section	Conclusions O
A novel w	av to probe compos	site particles?	

Usual way: partial wave analysis requires measuring x-section at different ${\bf k}',$ fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_k can be performed at fixed **k**' by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow complementary tools.

Ma C

Introduction	Single-twisted x-section 0000●	Double-twisted x-section	Conclusions
	av to probe compos	site particles?	

Usual way: partial wave analysis requires measuring x-section at different ${\bf k}',$ fitting the angular distribution and extracting different spherical harmonics.

Using twisted states with adjustable Δm : Fourier analysis w.r.t. ϕ_k can be performed at fixed **k**' by comparing several initial states.

Different requirements for the detectors \rightarrow different systematics \rightarrow complementary tools.

Ma C

Introduction	Single-twisted x-se	ction Double-twisted x-section	n Conclusions o
Colliding two	twisted p	articles	

 $|\kappa, m\rangle + |\eta, n\rangle \rightarrow X$.

The scattering matrix is

$$S_{2tw} = \int rac{d^2 \mathbf{k}}{(2\pi)^2} rac{d^2 \mathbf{p}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) S_{PW}(\mathbf{k},\mathbf{p}) \,.$$

The square $|S_{2tw}|^2$ contains

$$\int \frac{d^2 \mathbf{k} \, d^2 \mathbf{p} \, d^2 \mathbf{k}' \, d^2 \mathbf{p}'}{(2\pi)^8} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) a_{\kappa m}^*(\mathbf{k}') a_{\eta n}^*(\mathbf{p}') \\ \times \, \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p}' - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}') \,.$$

Kinematical restrictions: $|\mathbf{k}| = \kappa = |\mathbf{k}'|$ and $|\mathbf{p}| = \eta = |\mathbf{p}'|$; as well as $\mathbf{k} + \mathbf{p} = \mathbf{p}_X = \mathbf{k}' + \mathbf{p}'$.

Sar

Introduction	Single-twisted x	-section	Double-twisted x-section ●○○	Conclusions O
Colliding two	twisted	particles		

 $|\kappa, m\rangle + |\eta, n\rangle \rightarrow X$.

The scattering matrix is

$$S_{2tw} = \int \frac{d^2 \mathbf{k}}{(2\pi)^2} \frac{d^2 \mathbf{p}}{(2\pi)^2} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) S_{PW}(\mathbf{k}, \mathbf{p}) \,.$$

The square $|S_{2tw}|^2$ contains

$$\int \frac{d^2 \mathbf{k} \, d^2 \mathbf{p} \, d^2 \mathbf{k}' \, d^2 \mathbf{p}'}{(2\pi)^8} a_{\kappa m}(\mathbf{k}) a_{\eta n}(\mathbf{p}) a_{\kappa m}^*(\mathbf{k}') a_{\eta n}^*(\mathbf{p}') \\ \times \, \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X) \delta^{(2)}(\mathbf{k}' + \mathbf{p}' - \mathbf{p}_X) \mathcal{M}(\mathbf{k}, \mathbf{p}) \mathcal{M}^*(\mathbf{k}', \mathbf{p}') \,.$$

Kinematical restrictions: $|\mathbf{k}| = \kappa = |\mathbf{k}'|$ and $|\mathbf{p}| = \eta = |\mathbf{p}'|$; as well as $\mathbf{k} + \mathbf{p} = \mathbf{p}_X = \mathbf{k}' + \mathbf{p}'$.

Sac

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
		000	

For each \mathbf{p}_X there are two kinematical configurations:

In the product $\mathcal{M}(\mathbf{k},\mathbf{p})\mathcal{M}^*(\mathbf{k}',\mathbf{p}')$ one can have either $\mathbf{k}'=\mathbf{k}, \ \mathbf{p}'=\mathbf{p}$, or

 $\mathbf{k}' = \mathbf{k}^* \equiv -\mathbf{k} + 2(\mathbf{k}\mathbf{n}_X)\mathbf{n}_X, \quad \mathbf{p}' = \mathbf{p}^* \equiv -\mathbf{p} + 2(\mathbf{p}\mathbf{n}_X)\mathbf{n}_X,$

where $\mathbf{n}_X \equiv \mathbf{p}_X / |\mathbf{p}_X|$.

These two possibilities interfere. Therefore, the cross section will depend not only on $|\mathcal{M}(\mathbf{k},\mathbf{p})|^2$ but also on $\mathcal{M}(\mathbf{k},\mathbf{p})\mathcal{M}^*(\mathbf{k}^*,\mathbf{p}^*)$.

One can access the autocorrelation function of the amplitude.

JAC+

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
		000	

For each \mathbf{p}_X there are two kinematical configurations:

In the product $\mathcal{M}(\mathbf{k},\mathbf{p})\mathcal{M}^*(\mathbf{k}',\mathbf{p}')$ one can have either $\mathbf{k}'=\mathbf{k}, \ \mathbf{p}'=\mathbf{p}$, or

 $\mathbf{k}' = \mathbf{k}^* \equiv -\mathbf{k} + 2(\mathbf{k}\mathbf{n}_X)\mathbf{n}_X, \quad \mathbf{p}' = \mathbf{p}^* \equiv -\mathbf{p} + 2(\mathbf{p}\mathbf{n}_X)\mathbf{n}_X,$

where $\mathbf{n}_X \equiv \mathbf{p}_X / |\mathbf{p}_X|$.

These two possibilities interfere. Therefore, the cross section will depend not only on $|\mathcal{M}(\mathbf{k},\mathbf{p})|^2$ but also on $\mathcal{M}(\mathbf{k},\mathbf{p})\mathcal{M}^*(\mathbf{k}^*,\mathbf{p}^*)$.

One can access the autocorrelation function of the amplitude.

Introduction	Single-twisted x-section	Double-twisted x-section	Conclusions
		000	

The cross section is

$$d\sigma_{2tw} = \frac{1}{8\pi\sin(\delta_k + \delta_p)} \int d\phi_k d\phi_p \frac{j_{PW}(\mathbf{k}, \mathbf{p})}{j_{2tw}} \left[d\sigma_{PW}(\mathbf{k}, \mathbf{p}) + d\sigma'_{PW}(\mathbf{k}, \mathbf{p}) \right] ,$$

where

$$d\sigma'_{PW}(\mathbf{k},\mathbf{p}) = \frac{(2\pi)^4 \delta(E_i - E_f) \delta(p_{zi} - p_{zf}) \delta^{(2)}(\mathbf{k} + \mathbf{p} - \mathbf{p}_X)}{4E_p \omega j_{PW}} \times \operatorname{Re} \left[e^{2im(\phi_k - \phi_X) + 2in(\phi_p - \phi_X)} \mathcal{M}(\mathbf{k},\mathbf{p}) \mathcal{M}^*(\mathbf{k}^*,\mathbf{p}^*) \right] d\Gamma_X.$$

and

$$\delta_k = \arccos\left(\frac{\mathbf{p}_X^2 + \kappa^2 - \eta^2}{2|\mathbf{p}_X|\kappa}\right), \quad \delta_p = \arccos\left(\frac{\mathbf{p}_X^2 - \kappa^2 + \eta^2}{2|\mathbf{p}_X|\eta}\right).$$

The double-twisted cross section is *m*, *n*-dependent and stays finite at small κ , η .

1

I □ ▶

990

Introduction 0000000	Single-twisted x-section	Double-twisted x-section	Conclusions •
Conclusions			

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.

Ma C

Introduction 0000000	Single-twisted x-section	Double-twisted x-section	Conclusions •
Conclusions			

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.

Ma C

Introduction 0000000	Single-twisted x-section	Double-twisted x-section	Conclusions ●
Conclusions			

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.

Introduction 0000000	Single-twisted x-section	Double-twisted x-section	Conclusions ●
Conclusions			

- Many effects described are observable with today's technology.
- Fourier transform w.r.t. initial azimuthal angle might emerge as a new tool, complementary to the standard PWA.
- Double-twisted x-section is sensitive to the autocorrelation function, which is inaccessible in plane wave collisions.
- Plenty of novel physics opportunities offered by this new degree of freedom are to be studied.