Dr. Luis Rodero-Merino Avalon Group, Laboratoire de l'Informatique du Parallélisme INRIA

13th December, 2010

dip

PaaS Security, Hazards in Multitenant Software Platforms

Outline

Outline

- 1 Introduction: PaaS Clouds & Security Challenges
 - Multitenancy-induced Risks
- 2 Java Platform Security
 - Standard Java Security
 - Open Issues: Isolation, Accounting and Thread Termination
 - Solutions to Open Security Issues
 - Java-based Containers: J2EE and OSGi
- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET
- 4 Conclusions
 - Summing Up
 - Conclusions

Introduction: PaaS Clouds & Security Challenges

Multitenancy-induced Risks

Outline

Introduction: PaaS Clouds & Security Challenges Multitenancy-induced Risks

2 Java Platform Security

- Standard Java Security
- Open Issues: Isolation, Accounting and Thread Termination
- Solutions to Open Security Issues
- Java-based Containers: J2EE and OSGi

3 .NET Platform Security

Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

└─ Multitenancy-induced Risks

New Security Concerns in PaaS

 Platform-as-a-Service clouds provide a runtime for users' applications/components PaaS Security,Hazards in Multitenant Software Platforms Introduction: PaaS Clouds & Security Challenges

-Multitenancy-induced Risks

New Security Concerns in PaaS

- Platform-as-a-Service clouds provide a runtime for users' applications/components
- Security is one of the main concerns for cloud users

Multitenancy-induced Risks

New Security Concerns in PaaS

- Platform-as-a-Service clouds provide a runtime for users' applications/components
- Security is one of the main concerns for cloud users
- New security challenge in PaaS clouds:
 - Hosting of potentially malicious or faulty code

Introduction: PaaS Clouds & Security Challenges

Multitenancy-induced Risks

New Security Concerns in PaaS

- Platform-as-a-Service clouds provide a runtime for users' applications/components
- Security is one of the main concerns for cloud users
- New security challenge in PaaS clouds:
 - Hosting of potentially malicious or faulty code
 - Must protect the platform and other users' components

- Java Platform Security
 - Standard Java Security

Outline

Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks

2 Java Platform Security

Standard Java Security

- Open Issues: Isolation, Accounting and Thread Termination
- Solutions to Open Security Issues
- Java-based Containers: J2EE and OSGi
- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

└─ Java Platform Security

Standard Java Security

Standard Java Security

Bytecode verification (at load-time and runtime)

• Checks correct bytecode format, possible memory violations, valid type conversion...

- └─ Java Platform Security
 - Standard Java Security

Standard Java Security

- Bytecode verification (at load-time and runtime)
 - Checks correct bytecode format, possible memory violations, valid type conversion...
- Class loaders
 - Avoid namespace confusions
 - Avoid impostor code to replace parts of the runtime or legitimate code (*spoofing*)

└─ Java Platform Security

Standard Java Security

Standard Java Security

Bytecode verification (at load-time and runtime)

- Checks correct bytecode format, possible memory violations, valid type conversion...
- Class loaders
 - Avoid namespace confusions
 - Avoid impostor code to replace parts of the runtime or legitimate code (*spoofing*)
- Access control checking
 - Code centric
 - User centric (JAAS API)

Java Platform Security

Standard Java Security

Standard Java Security

Bytecode verification (at load-time and runtime)

- Checks correct bytecode format, possible memory violations, valid type conversion...
- Class loaders
 - Avoid namespace confusions
 - Avoid impostor code to replace parts of the runtime or legitimate code (*spoofing*)
- Access control checking
 - Code centric
 - User centric (JAAS API)

APIs for encryption (PKI), secure communication...

└─ Java Platform Security

Open Issues: Isolation, Accounting and Thread Termination

Outline

Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks

2 Java Platform Security

- Standard Java Security
- Open Issues: Isolation, Accounting and Thread Termination
- Solutions to Open Security Issues
- Java-based Containers: J2EE and OSGi
- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

Open Security Issues

 Herzog, Shahmehri Problems Running Untrusted Services as Java Threads

└─ Java Platform Security

Open Issues: Isolation, Accounting and Thread Termination

Open Security Issues

- Herzog, Shahmehri Problems Running Untrusted Services as Java Threads
- Isolation:
 - Visibility of object references
 - Blocking through static synchronized methods

└─ Java Platform Security

Open Issues: Isolation, Accounting and Thread Termination

Open Security Issues

- Herzog, Shahmehri Problems Running Untrusted Services as Java Threads
- Isolation:
 - Visibility of object references
 - Blocking through static synchronized methods

Resource Accounting:

- Resources are limited (CPU, memory...)
- Once access to some resource is granted, it can be used with no limitation

└─ Java Platform Security

Open Issues: Isolation, Accounting and Thread Termination

Open Security Issues

- Herzog, Shahmehri Problems Running Untrusted Services as Java Threads
- Isolation:
 - Visibility of object references
 - Blocking through static synchronized methods

Resource Accounting:

- Resources are limited (CPU, memory...)
- Once access to some resource is granted, it can be used with no limitation
- Safe Thread Termination:
 - There is no safe way to terminate a Java process
 - java.lang.Thread.stop() is deprecated (it unlocks monitors, and so it can leave objects in inconsistent state)

- └─ Java Platform Security
 - Solutions to Open Security Issues

Outline

Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks

2 Java Platform Security

- Standard Java Security
- Open Issues: Isolation, Accounting and Thread Termination

Solutions to Open Security Issues

Java-based Containers: J2EE and OSGi

- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

- └─ Java Platform Security
 - └─Solutions to Open Security Issues

- Introduces the concept of *isolate* (set of threads)
 - Non-shared heap, static vars or Class instances

- └─ Java Platform Security
 - └─Solutions to Open Security Issues

- Introduces the concept of *isolate* (set of threads)
 - Non-shared heap, static vars or Class instances

- └─ Java Platform Security
 - └─Solutions to Open Security Issues

- Introduces the concept of *isolate* (set of threads)
 - Non-shared heap, static vars or Class instances

Leaded to the JSR 121 Isolation API, two implementations:

- RI based on collaborating JVMs (one per OS process)
- MVM itself (all isolates in one single JVM)

- └─ Java Platform Security
 - Solutions to Open Security Issues

- Introduces the concept of *isolate* (set of threads)
 - Non-shared heap, static vars or Class instances

Leaded to the JSR 121 Isolation API, two implementations:

- RI based on collaborating JVMs (one per OS process)
- MVM itself (all isolates in one single JVM)
- New version of MVM "ready" from Sun/Oracle, but...

└─ Java Platform Security

└─Solutions to Open Security Issues

Solutions for Isolation (II): KaffeOS & I-JVM

KaffeOS

- Based on OS-like processes
- Implements mechanism for communication among processes by safe *shared heaps*

└─ Java Platform Security

Solutions to Open Security Issues

Solutions for Isolation (II): KaffeOS & I-JVM

KaffeOS

- Based on OS-like processes
- Implements mechanism for communication among processes by safe *shared heaps*
- I-JVM
 - *Isolates* based on sw modules (*bundles*). It is possible for threads to traverse them
 - An isolate's object can be passed to other in method call
 - Isolates share objects
 - Avoids the inter-isolates communication overhead

└─ Java Platform Security

Solutions to Open Security Issues

Solutions for Isolation (II): KaffeOS & I-JVM

KaffeOS

- Based on OS-like processes
- Implements mechanism for communication among processes by safe *shared heaps*
- I-JVM
 - Isolates based on sw modules (bundles). It is possible for threads to traverse them
 - An isolate's object can be passed to other in method call
 - Isolates share objects
 - Avoids the inter-isolates communication overhead

Jnode? JX?

- They provide isolation too!
- But they are Java-based OSs, not only modified JVMs. Hard to think about them as PaaS environments

└─ Java Platform Security

└-Solutions to Open Security Issues

Solutions for Resource Accounting

JVM Tooling Interface

• It can be used to inspect the usage of resources

└─ Java Platform Security

└-Solutions to Open Security Issues

Solutions for Resource Accounting

- It can be used to inspect the usage of resources
- Overhead, breaks Java portability (native code)

Java Platform Security

Solutions to Open Security Issues

Solutions for Resource Accounting

JVM Tooling Interface

- It can be used to inspect the usage of resources
- Overhead, breaks Java portability (native code)

JRes, JRAF-2 apply bytecode rewriting to inject accounting

└─ Java Platform Security

Solutions to Open Security Issues

Solutions for Resource Accounting

- It can be used to inspect the usage of resources
- Overhead, breaks Java portability (native code)
- JRes, JRAF-2 apply bytecode rewriting to inject accounting
- MVM-related framework: Resource Management API
 - Applied to clusters of VM instances
 - Leaded to JSR 284: Resource Consumption Management API
 - Implemented, unknown if it will be added to standard Java

└─ Java Platform Security

└─Solutions to Open Security Issues

Solutions for Resource Accounting

- It can be used to inspect the usage of resources
- Overhead, breaks Java portability (native code)
- JRes, JRAF-2 apply bytecode rewriting to inject accounting
- MVM-related framework: Resource Management API
 - Applied to clusters of VM instances
 - Leaded to JSR 284: Resource Consumption Management API
 - Implemented, unknown if it will be added to standard Java
- KaffeOS accounts CPU time and mem
 - Support for more resources can be added

└─ Java Platform Security

Solutions to Open Security Issues

Solutions for Resource Accounting

- It can be used to inspect the usage of resources
- Overhead, breaks Java portability (native code)
- JRes, JRAF-2 apply bytecode rewriting to inject accounting
- MVM-related framework: Resource Management API
 - Applied to clusters of VM instances
 - Leaded to JSR 284: Resource Consumption Management API
 - Implemented, unknown if it will be added to standard Java
- KaffeOS accounts CPU time and mem
 - Support for more resources can be added
- I-JVM accounts resources used per bundle
 - CPU, mem, threads, connections., bytes r/w

Java Platform Security

└-Solutions to Open Security Issues

Solutions for Safe Thread Termination

 Solved in MVM and KaffeOS, as it is possible to stop isolates and processes

└─ Java Platform Security

└─Solutions to Open Security Issues

Solutions for Safe Thread Termination

 Solved in MVM and KaffeOS, as it is possible to stop isolates and processes

- In I-JVM, isolates are stopped by StoppedIsolateException
 - It cannot be caught inside the isolate, i.e. it cannot be ignored
 - But threads can traverse isolates, so synchronized entities outside the isolate can be left in an inconsistent state

- └─ Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Outline

Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks

2 Java Platform Security

- Standard Java Security
- Open Issues: Isolation, Accounting and Thread Termination
- Solutions to Open Security Issues

Java-based Containers: J2EE and OSGi

3 .NET Platform Security

Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

- └─ Java Platform Security
 - └─Java-based Containers: J2EE and OSGi

Security in J2EE Containers

EJBs

- Restricted environment: an EJB cannot modify class loaders, access to files, access non-static fields, create threads...
- Security enforced by standard security mechanisms

- └─ Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Security in J2EE Containers

- EJBs
 - Restricted environment: an EJB cannot modify class loaders, access to files, access non-static fields, create threads...
 - Security enforced by standard security mechanisms
- Servlets
 - Apart from support for authentication and SSL, there is little about security enforcement

- └─ Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Security in J2EE Containers

- EJBs
 - Restricted environment: an EJB cannot modify class loaders, access to files, access non-static fields, create threads...
 - Security enforced by standard security mechanisms
- Servlets
 - Apart from support for authentication and SSL, there is little about security enforcement
- Solution proposed:
 - MVM has been applied to isolate J2EE apps
 - Each J2EE app (along its servers) are deployed on a set of isolates

- └─ Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Security in OSGi containers

- OSGi is based on *bundles*, components that can use/expose services
 - Each bundle decides which packages are hidden or exported
 - The container checks if bundles can access to packages and resources

- Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Security in OSGi containers

- OSGi is based on *bundles*, components that can use/expose services
 - Each bundle decides which packages are hidden or exported
 - The container checks if bundles can access to packages and resources
- 25 security flaws detected
 - 17 can be solved programmatically
 - Remaining 8 must be addressed at JVM level (all related to isolation, res accounting and thread termination)

- └─ Java Platform Security
 - └─ Java-based Containers: J2EE and OSGi

Security in OSGi containers

- OSGi is based on *bundles*, components that can use/expose services
 - Each bundle decides which packages are hidden or exported
 - The container checks if bundles can access to packages and resources
- 25 security flaws detected
 - 17 can be solved programmatically
 - Remaining 8 must be addressed at JVM level (all related to isolation, res accounting and thread termination)
- Solutions proposed:
 - I-JVM specifically aimed to solve OSGi security issues
 - OSGi + Isolation API on top of MVM

- └.NET Platform Security
 - \vdash Isolation, Accounting and Thread Termination in .NET

Outline

- Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks
- 2 Java Platform Security
 - Standard Java Security
 - Open Issues: Isolation, Accounting and Thread Termination
 - Solutions to Open Security Issues
 - Java-based Containers: J2EE and OSGi

3 .NET Platform Security

Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

PaaS Security,Hazards in Multitenant Software Platforms
L.NET Platform Security
LIsolation, Accounting and Thread Termination in .NET

Security in .NET

Isolation

- Possible through Application Domains (AD)
- ADs are isolated:
 - Not possible to call code of some AD from another
 - Each AD keeps its copy of static variables
 - Not possible leaked references

└.NET Platform Security

Isolation, Accounting and Thread Termination in .NET

Security in .NET

Isolation

- Possible through Application Domains (AD)
- ADs are isolated:
 - Not possible to call code of some AD from another
 - Each AD keeps its copy of static variables
 - Not possible leaked references

Resource Accounting

• Profiling of the CLR is possible, but no generic accounting framework is available

└.NET Platform Security

 \vdash Isolation, Accounting and Thread Termination in .NET

Security in .NET

Isolation

- Possible through *Application Domains* (AD)
- ADs are isolated:
 - Not possible to call code of some AD from another
 - Each AD keeps its copy of static variables
 - Not possible leaked references

Resource Accounting

• Profiling of the CLR is possible, but no generic accounting framework is available

Thread Termination

• System.Threading.Thread.Abort() can just be ignored

└.NET Platform Security

Isolation, Accounting and Thread Termination in .NET

Security in .NET

Isolation

- Possible through *Application Domains* (AD)
- ADs are isolated:
 - Not possible to call code of some AD from another
 - Each AD keeps its copy of static variables
 - Not possible leaked references

Resource Accounting

• Profiling of the CLR is possible, but no generic accounting framework is available

Thread Termination

• System.Threading.Thread.Abort() can just be ignored

Comparatively, little research about multitenancy in .NET

- Conclusions
 - └─Summing Up

Outline

- Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks
- 2 Java Platform Security
 - Standard Java Security
 - Open Issues: Isolation, Accounting and Thread Termination
 - Solutions to Open Security Issues
 - Java-based Containers: J2EE and OSGi
- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

└─Summing Up

Virtual Platforms Summary

Security Feature	JVM	CLR	MVM	I-JVM	KaffeOS
Access control mechanisms	Based on Permissions and Policies	Based on Permissions and Policies	Similar to JVM	Similar to JVM	Similar to JVM
Reference leak	Not fixed	Fixed with ADs	Fixed with Isolations	Fixed with Isolations	Fixed with Processes
Shared static references	Not fixed	Fixed with ADs	Fixed with Isolations	Fixed with Isolations	Fixed with Processes
Block by synchronized static components	Not fixed	Fixed with ADs	Fixed with Isolations	Fixed with Isolations	Fixed with Processes
Thread termination	Not fixed	Not fixed	Fixed with Isolations	Not Fixed	Fixed with Processes
Resource accounting	Profiling by JVMTI. Res acc specified by JSR 284	Profiling mechanism	Generic resource manage- ment API	CPU, mem, #threads, #net conns, I/O	CPU and memory

- Conclusions
 - Conclusions

Outline

- Introduction: PaaS Clouds & Security Challenges
 Multitenancy-induced Risks
- 2 Java Platform Security
 - Standard Java Security
 - Open Issues: Isolation, Accounting and Thread Termination
 - Solutions to Open Security Issues
 - Java-based Containers: J2EE and OSGi
- 3 .NET Platform Security
 - Isolation, Accounting and Thread Termination in .NET

4 Conclusions

- Summing Up
- Conclusions

Conclusions

Multitenancy introduces new threats to virtual sw platforms

Multitenancy introduces new threats to virtual sw platforms

To have in mind:

- Isolation
- Resource accounting
- Thread termination

Multitenancy introduces new threats to virtual sw platforms

To have in mind:

- Isolation
- Resource accounting
- Thread termination

There is not any container system that solves all issues

This was all...

Thank you!

Questions, comments?