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Choose a Lie algebra g, V (w) and {W1(z1), ..., WN(zN)}: representations of Uq(bg).

An R-matrix RWi,V (w/zi) encodes the Boltzmann weights AND satisfies the
Yang-Baxter equation.

Define a transfer matrix TV (w) = TraceV

←Q
RWi,V .

YBE =⇒ [TV (w), TV ′(w′)] = 0 for any choice of representations. =⇒ The
inhomogeneous, generalized Heisenberg spin chain is integrable.
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Solvability and combinatorics

Fact: The Bethe ansatz “works well” when V, Wi are special (KR-modules)
[Kulish-Reshetikhin, Kirillov,...].
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[Kulish-Reshetikhin, Kirillov,...].

Example: If g = Ar, KR modules in the limit q → 1 are evaluation modules ∼ V (kωi)

Algebraic-combinatorial structures of this model:

1 The completeness problem ∼ Hilbert space of TV (w).
Do we have enough Bethe vectors to span H ∼ W1 ⊗ · · · ⊗ WN?
Recursion relation: The Q-system

2 Eigenvalue problem ∼ The fusion relation for TV (w).
If we know the eigenvalues of TV for the fundamental representations V = V (ωi),
we can compute them for all others.
Recursion relation: The T -system

The recursion relations are discrete integrable systems, solvable using an auxiliary
statistical model.
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The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
vectors in the sector λ:

Mλ,n =
X

m

′

 
p + m

m

!

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
vectors in the sector λ:

Mλ,n =
X

m

′

 
p + m

m

!

n = {ni,k : 1 ≤ i ≤ r; k ∈ Z+} parametrizes the reps {Wj}.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
vectors in the sector λ:

Mλ,n =
X

m

′

 
p + m

m

!

n = {ni,k : 1 ≤ i ≤ r; k ∈ Z+} parametrizes the reps {Wj}.

p = {pi,k} are called “vacancy numbers”, functions of Cartan matrix, m,n.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
vectors in the sector λ:

Mλ,n =
X

m

′

 
p + m

m

!

n = {ni,k : 1 ≤ i ≤ r; k ∈ Z+} parametrizes the reps {Wj}.

p = {pi,k} are called “vacancy numbers”, functions of Cartan matrix, m,n.

m are non-negative integers {mi,k} with 1 ≤ i ≤ r.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 5 / 20



The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

H ≃ W1 ⊗ · · · ⊗ WN

We should have dλ = dim HomUq(g)(Vλ, H) Bethe vectors in each “sector” λ a
dominant highest weight.

(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe
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p + m
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!

n = {ni,k : 1 ≤ i ≤ r; k ∈ Z+} parametrizes the reps {Wj}.

p = {pi,k} are called “vacancy numbers”, functions of Cartan matrix, m,n.

m are non-negative integers {mi,k} with 1 ≤ i ≤ r.

The sum is restricted by “zero weight condition” and positivity of vacancy numbers.
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Completeness theorem

Theorem (Hatayama et al 1999 + Di-Francesco-K. 2007)

If the characters of Wi satisfy the Q-system recursion relation, then

Mλ,n = dλ

for any simple Lie algebra g.
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Completeness theorem

Theorem (Hatayama et al 1999 + Di-Francesco-K. 2007)

If the characters of Wi satisfy the Q-system recursion relation, then

Mλ,n = dλ

for any simple Lie algebra g.

The Q-system recursion relation for Ar is

Qi,k+1Qi,k−1 = Q2
i,k − Qi+1,kQi−1,k, 1 ≤ i ≤ r, k ≥ 1,

where

Q0,k = Qr+1,k = 1 by convention;

Boundary conditions: Qi,0 = 1 and Qi,1 = charV (ωi) = characters of the
fundamental representations.
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Q-system as an integrable discrete dynamical system

Drop the boundary condition Qi,0 = 1 and renormalize xi,k = (−1)⌊i/2⌋Qi,k:

xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k, x0,k = xr+1,k = 1, k ∈ Z, 1 ≤ i ≤ r

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 7 / 20



Q-system as an integrable discrete dynamical system

Drop the boundary condition Qi,0 = 1 and renormalize xi,k = (−1)⌊i/2⌋Qi,k:

xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k, x0,k = xr+1,k = 1, k ∈ Z, 1 ≤ i ≤ r

Discrete dynamical system for r functions xi of the discrete time parameter k.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 7 / 20



Q-system as an integrable discrete dynamical system

Drop the boundary condition Qi,0 = 1 and renormalize xi,k = (−1)⌊i/2⌋Qi,k:

xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k, x0,k = xr+1,k = 1, k ∈ Z, 1 ≤ i ≤ r

Discrete dynamical system for r functions xi of the discrete time parameter k.

This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
(i, k), it is called a mutation.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 7 / 20



Q-system as an integrable discrete dynamical system

Drop the boundary condition Qi,0 = 1 and renormalize xi,k = (−1)⌊i/2⌋Qi,k:

xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k, x0,k = xr+1,k = 1, k ∈ Z, 1 ≤ i ≤ r

Discrete dynamical system for r functions xi of the discrete time parameter k.

This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
(i, k), it is called a mutation.

Theorem (K.07)
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Discrete dynamical system for r functions xi of the discrete time parameter k.

This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each
(i, k), it is called a mutation.

Theorem (K.07)

For any Cartan matrix C of a simple Lie algebra g, the associated Q-system equations
are mutations in a cluster algebra with trivial coefficients, and exchange matrix

B =

„
Ct − C −Ct

C 0

«
.

Theorem (Di-Francesco,K.)

The system is integrable, solvable, solutions are partition functions of paths on a
weighted graph.
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What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by
commutative variables:

“Clusters” of r variables (x1(t), ..., xr(t)) and an exchange matrix B live on each
node t of a regular r-tree.
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xj(t)
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′) = xj(t).

The exchange matrix B also “mutates”.

Theorem (Fomin, Zelevinsky)

The cluster variables xi(t) at any node t are Laurent polynomials of (x1(t
′), ..., xr(t

′))
for any t, t′.

Conjecture

These polynomials have positive coefficients.
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The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

The system has r integrals of the motion (functions of xi,k which are independent of
k).

Example: For A1, Ck = C = x1,k−1x
−1
1,k + x1,kx−1

1,k−1 + x−1
1,kx−1

1,k−1 is independent
of k.
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The Q-system is solvable: x1,k satisfied a linear recursion relation with constant
coefficients.

Example: For A1, x1,k − Cx1,k+1 + x1,k+2 = 0.

Solutions x1,k are partition functions of weighted paths on a graph; for Ar with
r > 1, xi,k are P.F. of families of i non-intersecting paths on this graph.
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of k.

The Q-system is solvable: x1,k satisfied a linear recursion relation with constant
coefficients.

Example: For A1, x1,k − Cx1,k+1 + x1,k+2 = 0.

Solutions x1,k are partition functions of weighted paths on a graph; for Ar with
r > 1, xi,k are P.F. of families of i non-intersecting paths on this graph.

The weights are positive so this proves positivity of the solutions (conjectured for
cluster algebra).
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Example: The solution for the A1 Q-system as path PF

For A1,
x1,k+1x1,k−1 = x2

1,k + 1.

Solution to linear recursion relation is
X

k≥0

x1,ktk =
x1,0

1 − t y1

1−t
y2

1−ty3

y1 = x1,1x
−1
1,0, y2 = x−1

1,1x
−1
1,0, y3 = x−1

1,1x1,0.

The generating function on weighted paths from node 1 to itself on the graph:

1

1

1

ty1

ty2

ty3

1

2

3

4
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Solution of the Q-system for Ar

Gr =

1 2 r + 1

y1 y3

y2 y4 · · · y2r

y2r+1

Z1,1=Partition function of paths on Gr from node 1 to itself;

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 11 / 20



Solution of the Q-system for Ar

Gr =

1 2 r + 1

y1 y3

y2 y4 · · · y2r

y2r+1

Z1,1=Partition function of paths on Gr from node 1 to itself;

Nontrivial weights going from right to left:

yi = yi,0 =

8
><
>:

xi/2+1,0xi/2−1,1

xi/2,0xi/2,1
i even;

x(i+1)/2,1x(i−1)/2,0

x(i+1)/2,0x(i−1)/2,1
i odd,
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Solution of the Q-system for Ar

Gr =

1 2 r + 1

y1 y3

y2 y4 · · · y2r

y2r+1

Z1,1=Partition function of paths on Gr from node 1 to itself;

Nontrivial weights going from right to left:

yi = yi,0 =

8
><
>:

xi/2+1,0xi/2−1,1

xi/2,0xi/2,1
i even;

x(i+1)/2,1x(i−1)/2,0

x(i+1)/2,0x(i−1)/2,1
i odd,

Theorem (Di Francesco, K.)

Conserved quantities: Ci = partition function of i hard particles on the medial
graph of Gr, independent under simultaneous translation the blue labels in yi,0.
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x(i+1)/2,0x(i−1)/2,1
i odd,

Theorem (Di Francesco, K.)

Conserved quantities: Ci = partition function of i hard particles on the medial
graph of Gr, independent under simultaneous translation the blue labels in yi,0.

Linear recursion relation:
Pr+1

j=0(−1)jCjx1,k−j = 0.
x1,k

x1,0
= (1 + y1Z1,1)[k] (homogeneous component in yi of degree k).
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Example

For A2 we have the following paths contributing to x1,3 on the graph G2

y1

y2

y4

y3

y5

y1 y1

y1

y2

y2

y1

y2 y2

y3

y2

y4

y2

x1,3

x1,0
= (1 + y1Z1,1)[3] = y1Z1,1[2] = y1(y

2
1 + 2y1y2 + y2

2 + y3y2 + y4y2).
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“Mutating” between choices of initial conditions

Valid choices of initial data for the Q-system xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k
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“Mutating” between choices of initial conditions

Valid choices of initial data for the Q-system xi,k+1xi,k−1 = x2
i,k + xi+1,kxi−1,k

0 1 2 3
1

2

3

4

5

k

i

↑
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4

5

k

i
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↑

x4,0 7→ x4,2

0 1 2 3
1

2

3

4

5

k

i

↑

Have the form xm = {xi,mi , xi,mi+1 : 1 ≤ i ≤ r}, |mi − mi+1| ≤ 1. Choice of
initial conditions represented by m = (m1, ..., mr) (Motzkin path).
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↑

Have the form xm = {xi,mi , xi,mi+1 : 1 ≤ i ≤ r}, |mi − mi+1| ≤ 1. Choice of
initial conditions represented by m = (m1, ..., mr) (Motzkin path).

Weights yi(m) = yi(xm) given by recursion: If m
′ = m + εi then yj(m

′) = yj(m)
except for:

y′2i−1 = y2i−1 + y2i

y′2i = y2i+1y2i/y′2i−1

y′2i+1 = y2i+1y2i−1/y′2i−1

y′2i+2 = y2i+2y2i−1/y′2i−1 if mi = mi−1 = mi+1.

9
>>=
>>;

Mutation of weights.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 13 / 20



Variables x1,k as a function of xm

Definition (The weights zi(xm))

z2i = y2i(y2i+1)
mi+1−mi , z2i−1 = y2i−1 +

8
<
:

−y2i/y2i+1, mi+1 − mi = −1
y2i, mi+1 − mi = 1
0 mi − mi+1 = 0.
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8
<
:

−y2i/y2i+1, mi+1 − mi = −1
y2i, mi+1 − mi = 1
0 mi − mi+1 = 0.

Paths on the graph Gr with weights zi give x1,k as a function of data xm:

Theorem

As a function of xm = (xi,mi , xi,mi+1), the variables x1,k are given by the homogeneous
component of degree k in yi’s in the partition function of paths from vertex 1 to itself on
the graph Gr with weights zi:

x1,k+m1

x1,m1

= (1 + y1(m)Z1,1({zi(m)})[k]

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 14 / 20



Variables x1,k as a function of xm

Definition (The weights zi(xm))

z2i = y2i(y2i+1)
mi+1−mi , z2i−1 = y2i−1 +

8
<
:

−y2i/y2i+1, mi+1 − mi = −1
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0 mi − mi+1 = 0.

Paths on the graph Gr with weights zi give x1,k as a function of data xm:

Theorem

As a function of xm = (xi,mi , xi,mi+1), the variables x1,k are given by the homogeneous
component of degree k in yi’s in the partition function of paths from vertex 1 to itself on
the graph Gr with weights zi:

x1,k+m1

x1,m1

= (1 + y1(m)Z1,1({zi(m)})[k]

Proof of positivity of xi,k follows from LGV.

Rinat Kedem (UIUC) Itzykson Meeting 2010 Itzykson Meeting June 2010 14 / 20



The T -system for Ar

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k − Ti+1,j,kTi−1,j,k

Satisfied by the transfer matrices Ti,j,k = TV : auxiliary space V = Viωk(j) (j ∼
spectral parameter) if we impose initial conditions: Ti,j,0 = 1 and consider only
k > 0.
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The T -system for Ar

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k+Ti+1,j,kTi−1,j,k

Satisfied by the transfer matrices Ti,j,k = TV : auxiliary space V = Viωk(j) (j ∼
spectral parameter) if we impose initial conditions: Ti,j,0 = 1 and consider only
k > 0.

Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

Renormalize to have positive coefficients as for Q-system and relax the initial
conditions, consider k ∈ Z.
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The T -system for Ar

Ti,j,k+1Ti,j,k−1 = Ti,j+1,kTi,j−1,k + Ti+1,j,kTi−1,j,k

Satisfied by the transfer matrices Ti,j,k = TV : auxiliary space V = Viωk(j) (j ∼
spectral parameter) if we impose initial conditions: Ti,j,0 = 1 and consider only
k > 0.

Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

Renormalize to have positive coefficients as for Q-system and relax the initial
conditions, consider k ∈ Z.

This is also a cluster algebra mutation, and Ti,j,k are cluster variables in an
appropriate cluster algebra.
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The T -system as a non-commutative Q-system

Define an algebra generated by (mildly noncommutative) invertible generators:
T
±1
i,k , d±1 defined by the action on V = span{|j〉 : j ∈ Z}:

Ti,k|j + k + i〉 = Ti,j,k|j − k − i〉, d|j〉 = |j − 1〉.
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i,k , d±1 defined by the action on V = span{|j〉 : j ∈ Z}:

Ti,k|j + k + i〉 = Ti,j,k|j − k − i〉, d|j〉 = |j − 1〉.

The T -system equations are obtained as matrix elements of

Ti,k+1T
−1
i,kTi,k−1 = Ti,k + Ti+1,kT

−1
i,kTi−1,k,

with
T0,k = d2k, Tr+1,k = d2(k+r+1).
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T
±1
i,k , d±1 defined by the action on V = span{|j〉 : j ∈ Z}:

Ti,k|j + k + i〉 = Ti,j,k|j − k − i〉, d|j〉 = |j − 1〉.

The T -system equations are obtained as matrix elements of

Ti,k+1T
−1
i,kTi,k−1 = Ti,k + Ti+1,kT

−1
i,kTi−1,k,

with
T0,k = d2k, Tr+1,k = d2(k+r+1).

This is an example of a non-commutative Q-system equation.
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Solution of the T -system for Ar

Gr =

1 2 r + 1

Y1 Y3

Y2 Y4 · · · Y2r

Y2r+1

Z1,1= paths from node 1 to itself on Gr with non-commutative weights Yi.
Weighted paths respect non-commutative ordering!
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−1
i,0 d−2

Ti,1T
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2
Ti−1,0d

2.

Theorem (Di Francesco, K.)

Conserved quantities: Ci = partition function of i hard particles on the medial graph of Gr.

Linear recursion relation:
Pr+1

j=0(−1)jCjT1,k−j = 0.

T1,kT
−1
1,0 = (1 + Z1,1Y1)[k] (homogeneous component in Yi of degree k).
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Example of non-commutative partition function

For A2 we have the following paths contributing to T1,3 on the graph G2

Y1

Y2

Y4

Y3

Y5

Y1 Y1

Y1

Y2

Y2

Y1

Y2 Y2

Y3

Y2

Y4

Y2

T1,3T
−1
1,0 = (1 + Z1,1Y1)[3] = Z1,1[2]Y1 = (Y2

1 + Y2Y1 + Y1Y2 + Y
2
2 + Y3Y2 + Y4Y2)Y1.
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Mutations of non-commutative weights

There are many choices of initial conditions for the T -system: We limit ourselves to
those described by Motzkin paths m = (m1, ..., mr). (d2-invariant).
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Mutations of non-commutative weights

There are many choices of initial conditions for the T -system: We limit ourselves to
those described by Motzkin paths m = (m1, ..., mr). (d2-invariant).

The variable T1,k+m1T
−1
1,m1

as a function of Tm, the mutated data, is given by path
partition function on Gr with new weights Zi

Z2i = (Y2i+1)
mi+1−miY2i, Z2i−1 = Y2i−1+

8
<
:

−Y
−1
2i+1Y2i, mi+1 − mi = −1

Y2i, mi+1 − mi = 1
0 mi − mi+1 = 0.
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The variable T1,k+m1T
−1
1,m1

as a function of Tm, the mutated data, is given by path
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mi+1−miY2i, Z2i−1 = Y2i−1+

8
<
:

−Y
−1
2i+1Y2i, mi+1 − mi = −1

Y2i, mi+1 − mi = 1
0 mi − mi+1 = 0.

where Yi are given by the recursion: If m
′ = m + εi then Yj(m

′) = Yj(m) except
for:

Y
′
2i−1 = Y2i−1 + Y2i

Y
′
2i = Y2i+1Y2i(Y

′
2i−1)

−1

Y
′
2i+1 = Y2i+1Y2i−1(Y

′
2i−1)

−1
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where Yi are given by the recursion: If m
′ = m + εi then Yj(m

′) = Yj(m) except
for:

Y
′
2i−1 = Y2i−1 + Y2i

Y
′
2i = Y2i+1Y2i(Y

′
2i−1)

−1

Y
′
2i+1 = Y2i+1Y2i−1(Y

′
2i−1)

−1

Y
′
2i+2 = Y2i+2Y2i−1(Y

′
2i−1)

−1 if mi = mi−1 = mi+1.

9
>>=
>>;

Mutation of weights.
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Conclusion

Integrability allows us to explicitly solve for the variables in terms of path partition
functions.
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the quantum cluster algebra [Berenstein and Zelevinsky].
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the quantum cluster algebra [Berenstein and Zelevinsky].

Associated Y -systems can also be described in terms of cluster algebras: Periodicity
conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution
with this method yet).
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Conclusion

Integrability allows us to explicitly solve for the variables in terms of path partition
functions.

Non-commutative versions generalize: For example, the q-commuting Q-system is
the quantum cluster algebra [Berenstein and Zelevinsky].

Associated Y -systems can also be described in terms of cluster algebras: Periodicity
conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution
with this method yet).

Rank 2 completely non-commutative case related to the “wall crossing formulas” of
Kontsevich and Soibelman.
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