Positivity proofs and integrable models

Rinat Kedem
University of Illinois

Itzykson Meeting June 2010
(1) Generalized Heisenberg spin chains
(2) New combinatorics and the completeness problem
(3) New combinatorics and and the eigenvalue problem

Generalized Inhomogeneous Heisenberg Spin chain

- Choose a Lie algebra $\mathfrak{g}, V(w)$ and $\left\{W_{1}\left(z_{1}\right), \ldots, W_{N}\left(z_{N}\right)\right\}$: representations of $U_{q}(\widehat{g})$.

Generalized Inhomogeneous Heisenberg Spin chain

- Choose a Lie algebra $\mathfrak{g}, V(w)$ and $\left\{W_{1}\left(z_{1}\right), \ldots, W_{N}\left(z_{N}\right)\right\}$: representations of $U_{q}(\widehat{g})$.
- An R-matrix $R_{W_{i}, V}\left(w / z_{i}\right)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.

Generalized Inhomogeneous Heisenberg Spin chain

- Choose a Lie algebra $\mathfrak{g}, V(w)$ and $\left\{W_{1}\left(z_{1}\right), \ldots, W_{N}\left(z_{N}\right)\right\}$: representations of $U_{q}(\widehat{g})$.
- An R-matrix $R_{W_{i}, V}\left(w / z_{i}\right)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.
- Define a transfer matrix $T_{V}(w)=\operatorname{Trace}_{V} \prod^{\overleftarrow{ }} R_{W_{i}, V}$.

Generalized Inhomogeneous Heisenberg Spin chain

- Choose a Lie algebra $\mathfrak{g}, V(w)$ and $\left\{W_{1}\left(z_{1}\right), \ldots, W_{N}\left(z_{N}\right)\right\}$: representations of $U_{q}(\widehat{g})$.
- An R-matrix $R_{W_{i}, V}\left(w / z_{i}\right)$ encodes the Boltzmann weights AND satisfies the Yang-Baxter equation.
- Define a transfer matrix $T_{V}(w)=\operatorname{Trace}_{V} \overleftarrow{\prod} R_{W_{i}, V}$.
- YBE $\Longrightarrow\left[T_{V}(w), T_{V^{\prime}}\left(w^{\prime}\right)\right]=0$ for any choice of representations. \Longrightarrow The inhomogeneous, generalized Heisenberg spin chain is integrable.

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$.
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov, ...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$.

Do we have enough Bethe vectors to span $\mathcal{H} \sim W_{1} \otimes \cdots \otimes W_{N}$?
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov, ...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$. Do we have enough Bethe vectors to span $\mathcal{H} \sim W_{1} \otimes \cdots \otimes W_{N}$?
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

If we know the eigenvalues of T_{V} for the fundamental representations $V=V\left(\omega_{i}\right)$, we can compute them for all others.

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov, ...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$.

Do we have enough Bethe vectors to span $\mathcal{H} \sim W_{1} \otimes \cdots \otimes W_{N}$? Recursion relation: The Q-system
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

If we know the eigenvalues of T_{V} for the fundamental representations $V=V\left(\omega_{i}\right)$, we can compute them for all others.

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov, ...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$.

Do we have enough Bethe vectors to span $\mathcal{H} \sim W_{1} \otimes \cdots \otimes W_{N}$? Recursion relation: The Q-system
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

If we know the eigenvalues of T_{V} for the fundamental representations $V=V\left(\omega_{i}\right)$, we can compute them for all others.
Recursion relation: The T-system

Solvability and combinatorics

Fact: The Bethe ansatz "works well" when V, W_{i} are special (KR-modules) [Kulish-Reshetikhin, Kirillov,...].

Example: If $\mathfrak{g}=A_{r}, \mathrm{KR}$ modules in the limit $q \rightarrow 1$ are evaluation modules $\sim V\left(k \omega_{i}\right)$

Algebraic-combinatorial structures of this model:

(1) The completeness problem \sim Hilbert space of $T_{V}(w)$.

Do we have enough Bethe vectors to span $\mathcal{H} \sim W_{1} \otimes \cdots \otimes W_{N}$? Recursion relation: The Q-system
(2) Eigenvalue problem \sim The fusion relation for $T_{V}(w)$.

If we know the eigenvalues of T_{V} for the fundamental representations $V=V\left(\omega_{i}\right)$, we can compute them for all others.
Recursion relation: The T-system
The recursion relations are discrete integrable systems, solvable using an auxiliary statistical model.

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathscr{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathcal{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.
(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$
M_{\lambda, \mathbf{n}}=\sum_{\mathbf{m}}^{\prime}\binom{\mathbf{p}+\mathbf{m}}{\mathbf{m}}
$$

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathcal{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.
(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$
M_{\lambda, \mathbf{n}}=\sum_{\mathbf{m}}^{\prime}\binom{\mathbf{p}+\mathbf{m}}{\mathbf{m}}
$$

- $\mathbf{n}=\left\{n_{i, k}: 1 \leq i \leq r ; k \in \mathbb{Z}_{+}\right\}$parametrizes the reps $\left\{W_{j}\right\}$.

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathcal{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.
(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$
M_{\lambda, \mathbf{n}}=\sum_{\mathbf{m}}^{\prime}\binom{\mathbf{p}+\mathbf{m}}{\mathbf{m}}
$$

- $\mathbf{n}=\left\{n_{i, k}: 1 \leq i \leq r ; k \in \mathbb{Z}_{+}\right\}$parametrizes the reps $\left\{W_{j}\right\}$.
- $\mathbf{p}=\left\{p_{i, k}\right\}$ are called "vacancy numbers", functions of Cartan matrix, \mathbf{m}, \mathbf{n}.

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathcal{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.
(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$
M_{\lambda, \mathbf{n}}=\sum_{\mathbf{m}}^{\prime}\binom{\mathbf{p}+\mathbf{m}}{\mathbf{m}}
$$

- $\mathbf{n}=\left\{n_{i, k}: 1 \leq i \leq r ; k \in \mathbb{Z}_{+}\right\}$parametrizes the reps $\left\{W_{j}\right\}$.
- $\mathbf{p}=\left\{p_{i, k}\right\}$ are called "vacancy numbers", functions of Cartan matrix, m, n.
- \mathbf{m} are non-negative integers $\left\{m_{i, k}\right\}$ with $1 \leq i \leq r$.

The completeness problem

Do the Bethe vectors form a basis for the Hilbert space?

$$
\mathcal{H} \simeq W_{1} \otimes \cdots \otimes W_{N}
$$

We should have $d_{\lambda}=\operatorname{dim} \operatorname{Hom}_{U_{q}(\mathfrak{g})}\left(V_{\lambda}, \mathcal{H}\right)$ Bethe vectors in each "sector" λ a dominant highest weight.
(Modulo the string hypothesis) There is a combinatorial formula for the number of Bethe vectors in the sector λ :

$$
M_{\lambda, \mathbf{n}}=\sum_{\mathbf{m}}^{\prime}\binom{\mathbf{p}+\mathbf{m}}{\mathbf{m}}
$$

- $\mathbf{n}=\left\{n_{i, k}: 1 \leq i \leq r ; k \in \mathbb{Z}_{+}\right\}$parametrizes the reps $\left\{W_{j}\right\}$.
- $\mathbf{p}=\left\{p_{i, k}\right\}$ are called "vacancy numbers", functions of Cartan matrix, \mathbf{m}, \mathbf{n}.
- \mathbf{m} are non-negative integers $\left\{m_{i, k}\right\}$ with $1 \leq i \leq r$.
- The sum is restricted by "zero weight condition" and positivity of vacancy numbers.

Completeness theorem

Theorem (Hatayama et al $1999+$ Di-Francesco-K. 2007)
If the characters of W_{i} satisfy the Q-system recursion relation, then

$$
M_{\lambda, \mathbf{n}}=d_{\lambda}
$$

for any simple Lie algebra \mathfrak{g}.

Completeness theorem

Theorem (Hatayama et al 1999 + Di-Francesco-K. 2007)

If the characters of W_{i} satisfy the Q-system recursion relation, then

$$
M_{\lambda, \mathbf{n}}=d_{\lambda}
$$

for any simple Lie algebra \mathfrak{g}.
The Q-system recursion relation for A_{r} is

$$
Q_{i, k+1} Q_{i, k-1}=Q_{i, k}^{2}-Q_{i+1, k} Q_{i-1, k}, \quad 1 \leq i \leq r, \quad k \geq 1,
$$

where

- $Q_{0, k}=Q_{r+1, k}=1$ by convention;
- Boundary conditions: $Q_{i, 0}=1$ and $Q_{i, 1}=\operatorname{char} V\left(\omega_{i}\right)=$ characters of the fundamental representations.

Q-system as an integrable discrete dynamical system

Drop the boundary condition $Q_{i, 0}=1$ and renormalize $x_{i, k}=(-1)^{\lfloor i / 2\rfloor} Q_{i, k}$:

$$
x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}, \quad x_{0, k}=x_{r+1, k}=1, \quad k \in \mathbb{Z}, 1 \leq i \leq r
$$

Q-system as an integrable discrete dynamical system

Drop the boundary condition $Q_{i, 0}=1$ and renormalize $x_{i, k}=(-1)^{\lfloor i / 2\rfloor} Q_{i, k}$:

$$
x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}, \quad x_{0, k}=x_{r+1, k}=1, \quad k \in \mathbb{Z}, 1 \leq i \leq r
$$

- Discrete dynamical system for r functions x_{i} of the discrete time parameter k.

Q-system as an integrable discrete dynamical system

Drop the boundary condition $Q_{i, 0}=1$ and renormalize $x_{i, k}=(-1)^{\lfloor i / 2\rfloor} Q_{i, k}$:

$$
x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}, \quad x_{0, k}=x_{r+1, k}=1, \quad k \in \mathbb{Z}, 1 \leq i \leq r
$$

- Discrete dynamical system for r functions x_{i} of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a mutation.
Q-system as an integrable discrete dynamical system
Drop the boundary condition $Q_{i, 0}=1$ and renormalize $x_{i, k}=(-1)^{\lfloor i / 2\rfloor} Q_{i, k}$:

$$
x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}, \quad x_{0, k}=x_{r+1, k}=1, \quad k \in \mathbb{Z}, 1 \leq i \leq r
$$

- Discrete dynamical system for r functions x_{i} of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a mutation.

Theorem (K.07)

For any Cartan matrix C of a simple Lie algebra \mathfrak{g}, the associated Q-system equations are mutations in a cluster algebra with trivial coefficients, and exchange matrix
$B=\left(\begin{array}{cc}C^{t}-C & -C^{t} \\ C & 0\end{array}\right)$.
Q-system as an integrable discrete dynamical system
Drop the boundary condition $Q_{i, 0}=1$ and renormalize $x_{i, k}=(-1)^{\lfloor i / 2\rfloor} Q_{i, k}$:

$$
x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}, \quad x_{0, k}=x_{r+1, k}=1, \quad k \in \mathbb{Z}, 1 \leq i \leq r
$$

- Discrete dynamical system for r functions x_{i} of the discrete time parameter k.
- This equation appears in the theory of cluster algebras [Fomin, Zelevinsky]: for each (i, k), it is called a mutation.

Theorem (K.07)

For any Cartan matrix C of a simple Lie algebra \mathfrak{g}, the associated Q-system equations are mutations in a cluster algebra with trivial coefficients, and exchange matrix
$B=\left(\begin{array}{cc}C^{t}-C & -C^{t} \\ C & 0\end{array}\right)$.

Theorem (Di-Francesco,K.)

The system is integrable, solvable, solutions are partition functions of paths on a weighted graph.

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled $1, \ldots, r$.

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled $1, \ldots, r$.
- If an edge labeled i connects node t with node t^{\prime} then the clusters are related by a rational expression:

$$
x_{i}\left(t^{\prime}\right) x_{i}(t)=\prod_{j} x_{j}(t)^{\left[B_{j i}\right]_{+}}+\prod_{j} x_{j}(t)^{\left[-B_{j i}\right]_{+}}, \quad x_{j \neq i}\left(t^{\prime}\right)=x_{j}(t)
$$

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled $1, \ldots, r$.
- If an edge labeled i connects node t with node t^{\prime} then the clusters are related by a rational expression:

$$
x_{i}\left(t^{\prime}\right) x_{i}(t)=\prod_{j} x_{j}(t)^{\left[B_{j i}\right]_{+}}+\prod_{j} x_{j}(t)^{\left[-B_{j i}\right]_{+}}, \quad x_{j \neq i}\left(t^{\prime}\right)=x_{j}(t)
$$

- The exchange matrix B also "mutates".

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled $1, \ldots, r$.
- If an edge labeled i connects node t with node t^{\prime} then the clusters are related by a rational expression:

$$
x_{i}\left(t^{\prime}\right) x_{i}(t)=\prod_{j} x_{j}(t)^{\left[B_{j i}\right]_{+}}+\prod_{j} x_{j}(t)^{\left[-B_{j i}\right]_{+}}, \quad x_{j \neq i}\left(t^{\prime}\right)=x_{j}(t)
$$

- The exchange matrix B also "mutates".

Theorem (Fomin, Zelevinsky)

The cluster variables $x_{i}(t)$ at any node t are Laurent polynomials of $\left(x_{1}\left(t^{\prime}\right), \ldots, x_{r}\left(t^{\prime}\right)\right)$ for any t, t^{\prime}.

What are cluster algebras?

A rank r cluster algebra [Fomin, Zelevinsky 2000] is an algebra generated by commutative variables:

- "Clusters" of r variables $\left(x_{1}(t), \ldots, x_{r}(t)\right)$ and an exchange matrix B live on each node t of a regular r-tree.
- Edges connected to each node are labeled $1, \ldots, r$.
- If an edge labeled i connects node t with node t^{\prime} then the clusters are related by a rational expression:

$$
x_{i}\left(t^{\prime}\right) x_{i}(t)=\prod_{j} x_{j}(t)^{\left[B_{j i}\right]_{+}}+\prod_{j} x_{j}(t)^{\left[-B_{j i}\right]+}, \quad x_{j \neq i}\left(t^{\prime}\right)=x_{j}(t) .
$$

- The exchange matrix B also "mutates".

Theorem (Fomin, Zelevinsky)

The cluster variables $x_{i}(t)$ at any node t are Laurent polynomials of $\left(x_{1}\left(t^{\prime}\right), \ldots, x_{r}\left(t^{\prime}\right)\right)$ for any t, t^{\prime}.

Conjecture

These polynomials have positive coefficients.

The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

- The system has r integrals of the motion (functions of $x_{i, k}$ which are independent of $k)$.

Example: For $A_{1}, C_{k}=C=x_{1, k-1} x_{1, k}^{-1}+x_{1, k} x_{1, k-1}^{-1}+x_{1, k}^{-1} x_{1, k-1}^{-1}$ is independent of k.

The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

- The system has r integrals of the motion (functions of $x_{i, k}$ which are independent of $k)$.

Example: For $A_{1}, C_{k}=C=x_{1, k-1} x_{1, k}^{-1}+x_{1, k} x_{1, k-1}^{-1}+x_{1, k}^{-1} x_{1, k-1}^{-1}$ is independent of k.

- The Q-system is solvable: $x_{1, k}$ satisfied a linear recursion relation with constant coefficients.

Example: For $A_{1}, x_{1, k}-C x_{1, k+1}+x_{1, k+2}=0$.
Solutions $x_{1, k}$ are partition functions of weighted paths on a graph; for A_{r} with $r>1, x_{i, k}$ are P.F. of families of i non-intersecting paths on this graph.

The Q-system is an integrable sub-cluster algebra

Our system has more structure than a cluster algebra: It is integrable

- The system has r integrals of the motion (functions of $x_{i, k}$ which are independent of $k)$.

Example: For $A_{1}, C_{k}=C=x_{1, k-1} x_{1, k}^{-1}+x_{1, k} x_{1, k-1}^{-1}+x_{1, k}^{-1} x_{1, k-1}^{-1}$ is independent of k.

- The Q-system is solvable: $x_{1, k}$ satisfied a linear recursion relation with constant coefficients.

Example: For $A_{1}, x_{1, k}-C x_{1, k+1}+x_{1, k+2}=0$.
Solutions $x_{1, k}$ are partition functions of weighted paths on a graph; for A_{r} with $r>1, x_{i, k}$ are P.F. of families of i non-intersecting paths on this graph.

- The weights are positive so this proves positivity of the solutions (conjectured for cluster algebra).

Example: The solution for the $A_{1} Q$-system as path PF

For A_{1},

$$
x_{1, k+1} x_{1, k-1}=x_{1, k}^{2}+1 .
$$

Solution to linear recursion relation is

$$
\begin{aligned}
\sum_{k \geq 0} x_{1, k} t^{k} & =\frac{x_{1,0}}{1-t \frac{y_{1}}{1-t \frac{y_{2}}{1-t y_{3}}}} \\
y_{1}=x_{1,1} x_{1,0}^{-1}, \quad y_{2} & =x_{1,1}^{-1} x_{1,0}^{-1}, \quad y_{3}=x_{1,1}^{-1} x_{1,0}
\end{aligned}
$$

The generating function on weighted paths from node 1 to itself on the graph:

Example: The solution for the $A_{1} Q$-system as path PF

For A_{1},

$$
x_{1, k+1} x_{1, k-1}=x_{1, k}^{2}+1 .
$$

Solution to linear recursion relation is

$$
\begin{gathered}
\sum_{k \geq 0} x_{1, k} t^{k}=\frac{x_{1,0}}{1-t \frac{y_{1}}{1-t \frac{g_{2}}{1-t y_{3}}}} \\
y_{1}=x_{1,1} x_{1,0}^{-1}, \quad y_{2}=x_{1,1}^{-1} x_{1,0}^{-1}, \quad y_{3}=x_{1,1}^{-1} x_{1,0}
\end{gathered}
$$

The generating function on weighted paths from node 1 to itself on the graph:

Example: The solution for the $A_{1} Q$-system as path PF

For A_{1},

$$
x_{1, k+1} x_{1, k-1}=x_{1, k}^{2}+1 .
$$

Solution to linear recursion relation is

$$
\begin{gathered}
\sum_{k \geq 0} x_{1, k} t^{k}=\frac{x_{1,0}}{1-t \frac{y_{1}}{1-t \frac{g_{2}}{1-t y_{3}}}} \\
y_{1}=x_{1,1} x_{1,0}^{-1}, \quad y_{2}=x_{1,1}^{-1} x_{1,0}^{-1}, \quad y_{3}=x_{1,1}^{-1} x_{1,0}
\end{gathered}
$$

The generating function on weighted paths from node 1 to itself on the graph:

Solution of the Q-system for A_{r}

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;

Solution of the Q-system for A_{r}

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;
- Nontrivial weights going from right to left:

$$
y_{i}=y_{i, 0}= \begin{cases}\frac{x_{i / 2+1,0} x_{i / 2-1,1}}{x_{i / 2,0} x_{i / 2,1}} & i \text { even } \\ \frac{x_{(i+1) / 2,1^{x}} x_{(i-1) / 2,0}}{x_{(i+1) / 2,0} x_{(i-1) / 2,1}} & i \text { odd }\end{cases}
$$

Solution of the Q-system for A_{r}

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;
- Nontrivial weights going from right to left:

$$
y_{i}=y_{i, 0}= \begin{cases}\frac{x_{i / 2+1,0} x_{i / 2-1,1}}{x_{i / 2,0} x_{i / 2,1}} & i \text { even } \\ \frac{x_{(i+1) / 2,1^{x}} x_{(i-1) / 2,0}}{x_{(i+1) / 2,0} x_{(i-1) / 2,1}} & i \text { odd }\end{cases}
$$

Solution of the Q-system for A_{r}

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;
- Nontrivial weights going from right to left:

$$
y_{i}=y_{i, 0}= \begin{cases}\frac{x_{i / 2+1,0} x_{i / 2-1,1}}{x_{i / 2,0} x_{i / 2,1}} & i \text { even } \\ \frac{x_{(i+1) / 2,1} x_{(i-1) / 2,0}}{x_{(i+1) / 2,0} x_{(i-1) / 2,1}} & i \text { odd }\end{cases}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}, independent under simultaneous translation the blue labels in $y_{i, 0}$.

Solution of the Q-system for A_{r}

$G_{r}=$

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;
- Nontrivial weights going from right to left:

$$
y_{i}=y_{i, 0}= \begin{cases}\frac{x_{i / 2+1,0} x_{i / 2-1,1}}{x_{i / 2,0} x_{i / 2,1}} & i \text { even } \\ \frac{x_{(i+1) / 2,1} x_{(i-1) / 2,0}}{x_{(i+1) / 2,0} x_{(i-1) / 2,1}} & i \text { odd }\end{cases}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}, independent under simultaneous translation the blue labels in $y_{i, 0}$.
- Linear recursion relation: $\sum_{j=0}^{r+1}(-1)^{j} C_{j} x_{1, k-j}=0$.

Solution of the Q-system for A_{r}

$G_{r}=$

- $Z_{1,1}=$ Partition function of paths on G_{r} from node 1 to itself;
- Nontrivial weights going from right to left:

$$
y_{i}=y_{i, 0}= \begin{cases}\frac{x_{i / 2+1,0} x_{i / 2-1,1}}{x_{i / 2,0} x_{i / 2,1}} & i \text { even; } \\ \frac{x_{(i+1) / 2,1} x_{(i-1) / 2,0}}{x_{(i+1) / 2,0^{x}(i-1) / 2,1}} & i \text { odd }\end{cases}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}, independent under simultaneous translation the blue labels in $y_{i, 0}$.
- Linear recursion relation: $\sum_{j=0}^{r+1}(-1)^{j} C_{j} x_{1, k-j}=0$.
- $\frac{x_{1, k}}{x_{1,0}}=\left(1+y_{1} Z_{1,1}\right)[k]$ (homogeneous component in y_{i} of degree k).

Example

For A_{2} we have the following paths contributing to $x_{1,3}$ on the graph G_{2}

$\frac{x_{1,3}}{x_{1,0}}=\left(1+y_{1} Z_{1,1}\right)[3]=y_{1} Z_{1,1}[2]=y_{1}\left(y_{1}^{2}+2 y_{1} y_{2}+y_{2}^{2}+y_{3} y_{2}+y_{4} y_{2}\right)$.

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

- Have the form $\mathbf{x}_{\mathrm{m}}=\left\{x_{i, m_{i}}, x_{i, m_{i}+1}: 1 \leq i \leq r\right\}, \quad\left|m_{i}-m_{i+1}\right| \leq 1$. Choice of initial conditions represented by $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$ (Motzkin path).

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

- Have the form $\mathbf{x}_{\mathrm{m}}=\left\{x_{i, m_{i}}, x_{i, m_{i}+1}: 1 \leq i \leq r\right\}, \quad\left|m_{i}-m_{i+1}\right| \leq 1$. Choice of initial conditions represented by $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$ (Motzkin path).
- Weights $y_{i}(\mathbf{m})=y_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$ given by recursion: If $\mathbf{m}^{\prime}=\mathbf{m}+\varepsilon_{i}$ then $y_{j}\left(\mathbf{m}^{\prime}\right)=y_{j}(\mathbf{m})$ except for:

$$
\begin{aligned}
& y_{2 i-1}^{\prime}=y_{2 i-1}+y_{2 i} \\
& y_{2 i}^{\prime}=y_{2 i+1} y_{2 i} / y_{2 i-1}^{\prime} \\
& y_{2 i+1}^{\prime}=y_{2 i+1} y_{2 i-1} / y_{2 i-1}^{\prime}
\end{aligned}
$$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

- Have the form $\mathbf{x}_{\mathrm{m}}=\left\{x_{i, m_{i}}, x_{i, m_{i}+1}: 1 \leq i \leq r\right\}, \quad\left|m_{i}-m_{i+1}\right| \leq 1$. Choice of initial conditions represented by $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$ (Motzkin path).
- Weights $y_{i}(\mathbf{m})=y_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$ given by recursion: If $\mathbf{m}^{\prime}=\mathbf{m}+\varepsilon_{i}$ then $y_{j}\left(\mathbf{m}^{\prime}\right)=y_{j}(\mathbf{m})$ except for:

$$
\begin{aligned}
& y_{2 i-1}^{\prime}=y_{2 i-1}+y_{2 i} \\
& y_{2 i}^{\prime}=y_{2 i+1} y_{2 i} / y_{2 i-1}^{\prime} \\
& y_{2 i+1}^{\prime}=y_{2 i+1} y_{2 i-1} / y_{2 i-1}^{\prime}
\end{aligned}
$$

"Mutating" between choices of initial conditions

- Valid choices of initial data for the Q-system $x_{i, k+1} x_{i, k-1}=x_{i, k}^{2}+x_{i+1, k} x_{i-1, k}$

- Have the form $\mathbf{x}_{\mathrm{m}}=\left\{x_{i, m_{i}}, x_{i, m_{i}+1}: 1 \leq i \leq r\right\}, \quad\left|m_{i}-m_{i+1}\right| \leq 1$. Choice of initial conditions represented by $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$ (Motzkin path).
- Weights $y_{i}(\mathbf{m})=y_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$ given by recursion: If $\mathbf{m}^{\prime}=\mathbf{m}+\varepsilon_{i}$ then $y_{j}\left(\mathbf{m}^{\prime}\right)=y_{j}(\mathbf{m})$ except for:

$$
\begin{aligned}
& y_{2 i-1}^{\prime}=y_{2 i-1}+y_{2 i} \\
& y_{2 i}^{\prime}=y_{2 i+1} y_{2 i} / y_{2 i-1}^{\prime} \\
& y_{2 i+1}^{\prime}=y_{2 i+1} y_{2 i-1} / y_{2 i-1}^{\prime} \\
& y_{2 i+2}^{\prime}=y_{2 i+2} y_{2 i-1} / y_{2 i-1}^{\prime}
\end{aligned} \quad \text { if } m_{i}=m_{i-1}=m_{i+1} . ~ \$ \quad \text { Mutation of weights. }
$$

Variables $x_{1, k}$ as a function of $\mathbf{x}_{\mathbf{m}}$

Definition (The weights $z_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$)

$$
z_{2 i}=y_{2 i}\left(y_{2 i+1}\right)^{m_{i+1}-m_{i}}, \quad z_{2 i-1}=y_{2 i-1}+ \begin{cases}-y_{2 i} / y_{2 i+1}, & m_{i+1}-m_{i}=-1 \\ y_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Variables $x_{1, k}$ as a function of $\mathbf{x}_{\mathbf{m}}$

Definition (The weights $z_{i}\left(\mathbf{x}_{\mathrm{m}}\right)$)

$$
z_{2 i}=y_{2 i}\left(y_{2 i+1}\right)^{m_{i+1}-m_{i}}, \quad z_{2 i-1}=y_{2 i-1}+ \begin{cases}-y_{2 i} / y_{2 i+1}, & m_{i+1}-m_{i}=-1 \\ y_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Paths on the graph G_{r} with weights z_{i} give $x_{1, k}$ as a function of data $\mathbf{x}_{\mathbf{m}}$:

Variables $x_{1, k}$ as a function of $\mathbf{x}_{\mathbf{m}}$

Definition (The weights $z_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$)

$$
z_{2 i}=y_{2 i}\left(y_{2 i+1}\right)^{m_{i+1}-m_{i}}, \quad z_{2 i-1}=y_{2 i-1}+ \begin{cases}-y_{2 i} / y_{2 i+1}, & m_{i+1}-m_{i}=-1 \\ y_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Paths on the graph G_{r} with weights z_{i} give $x_{1, k}$ as a function of data $\mathbf{x}_{\mathbf{m}}$:

Theorem

As a function of $\mathbf{x}_{\mathbf{m}}=\left(x_{i, m_{i}}, x_{i, m_{i}+1}\right)$, the variables $x_{1, k}$ are given by the homogeneous component of degree k in y_{i} 's in the partition function of paths from vertex 1 to itself on the graph G_{r} with weights z_{i} :

$$
\frac{x_{1, k+m_{1}}}{x_{1, m_{1}}}=\left(1+y_{1}(\mathbf{m}) Z_{1,1}\left(\left\{z_{i}(\mathbf{m})\right\}\right)[k]\right.
$$

Variables $x_{1, k}$ as a function of $\mathbf{x}_{\mathbf{m}}$

Definition (The weights $z_{i}\left(\mathbf{x}_{\mathbf{m}}\right)$)

$$
z_{2 i}=y_{2 i}\left(y_{2 i+1}\right)^{m_{i+1}-m_{i}}, \quad z_{2 i-1}=y_{2 i-1}+ \begin{cases}-y_{2 i} / y_{2 i+1}, & m_{i+1}-m_{i}=-1 \\ y_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Paths on the graph G_{r} with weights z_{i} give $x_{1, k}$ as a function of data $\mathbf{x}_{\mathbf{m}}$:

Theorem

As a function of $\mathbf{x}_{\mathbf{m}}=\left(x_{i, m_{i}}, x_{i, m_{i}+1}\right)$, the variables $x_{1, k}$ are given by the homogeneous component of degree k in y_{i} 's in the partition function of paths from vertex 1 to itself on the graph G_{r} with weights z_{i} :

$$
\frac{x_{1, k+m_{1}}}{x_{1, m_{1}}}=\left(1+y_{1}(\mathbf{m}) Z_{1,1}\left(\left\{z_{i}(\mathbf{m})\right\}\right)[k]\right.
$$

Proof of positivity of $x_{i, k}$ follows from LGV.

The T-system for A_{r}

$$
T_{i, j, k+1} T_{i, j, k-1}=T_{i, j+1, k} T_{i, j-1, k}-T_{i+1, j, k} T_{i-1, j, k}
$$

- Satisfied by the transfer matrices $T_{i, j, k}=T_{V}$: auxiliary space $V=V_{i \omega_{k}}(j)(j \sim$ spectral parameter) if we impose initial conditions: $T_{i, j, 0}=1$ and consider only $k>0$.

The T-system for A_{r}

$$
T_{i, j, k+1} T_{i, j, k-1}=T_{i, j+1, k} T_{i, j-1, k}-T_{i+1, j, k} T_{i-1, j, k}
$$

- Satisfied by the transfer matrices $T_{i, j, k}=T_{V}$: auxiliary space $V=V_{i \omega_{k}}(j)(j \sim$ spectral parameter) if we impose initial conditions: $T_{i, j, 0}=1$ and consider only $k>0$.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].

The T-system for A_{r}

$$
T_{i, j, k+1} T_{i, j, k-1}=T_{i, j+1, k} T_{i, j-1, k}+T_{i+1, j, k} T_{i-1, j, k}
$$

- Satisfied by the transfer matrices $T_{i, j, k}=T_{V}$: auxiliary space $V=V_{i \omega_{k}}(j)(j \sim$ spectral parameter) if we impose initial conditions: $T_{i, j, 0}=1$ and consider only $k>0$.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].
- Renormalize to have positive coefficients as for Q-system and relax the initial conditions, consider $k \in \mathbb{Z}$.

The T-system for A_{r}

$$
T_{i, j, k+1} T_{i, j, k-1}=T_{i, j+1, k} T_{i, j-1, k}+T_{i+1, j, k} T_{i-1, j, k}
$$

- Satisfied by the transfer matrices $T_{i, j, k}=T_{V}$: auxiliary space $V=V_{i \omega_{k}}(j)(j \sim$ spectral parameter) if we impose initial conditions: $T_{i, j, 0}=1$ and consider only $k>0$.
- Known to be a discrete integrable system: Hirota equation [e.g. Krichever et. al, ...].
- Renormalize to have positive coefficients as for Q-system and relax the initial conditions, consider $k \in \mathbb{Z}$.
- This is also a cluster algebra mutation, and $T_{i, j, k}$ are cluster variables in an appropriate cluster algebra.

The T-system as a non-commutative Q-system

- Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i, k}^{ \pm 1}, d^{ \pm 1}$ defined by the action on $V=\operatorname{span}\{|j\rangle: j \in \mathbb{Z}\}$:

$$
\mathbb{T}_{i, k}|j+k+i\rangle=T_{i, j, k}|j-k-i\rangle, \quad d|j\rangle=|j-1\rangle
$$

The T-system as a non-commutative Q-system

- Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i, k}^{ \pm 1}, d^{ \pm 1}$ defined by the action on $V=\operatorname{span}\{|j\rangle: j \in \mathbb{Z}\}$:

$$
\mathbb{T}_{i, k}|j+k+i\rangle=T_{i, j, k}|j-k-i\rangle, \quad d|j\rangle=|j-1\rangle
$$

- The T-system equations are obtained as matrix elements of

$$
\mathbb{T}_{i, k+1} \mathbb{T}_{i, k}^{-1} \mathbb{T}_{i, k-1}=\mathbb{T}_{i, k}+\mathbb{T}_{i+1, k} \mathbb{T}_{i, k}^{-1} \mathbb{T}_{i-1, k}
$$

with

$$
\mathbb{T}_{0, k}=d^{2 k}, \quad \mathbb{T}_{r+1, k}=d^{2(k+r+1)}
$$

The T-system as a non-commutative Q-system

- Define an algebra generated by (mildly noncommutative) invertible generators: $\mathbb{T}_{i, k}^{ \pm 1}, d^{ \pm 1}$ defined by the action on $V=\operatorname{span}\{|j\rangle: j \in \mathbb{Z}\}$:

$$
\mathbb{T}_{i, k}|j+k+i\rangle=T_{i, j, k}|j-k-i\rangle, \quad d|j\rangle=|j-1\rangle
$$

- The T-system equations are obtained as matrix elements of

$$
\mathbb{T}_{i, k+1} \mathbb{T}_{i, k}^{-1} \mathbb{T}_{i, k-1}=\mathbb{T}_{i, k}+\mathbb{T}_{i+1, k} \mathbb{T}_{i, k}^{-1} \mathbb{T}_{i-1, k}
$$

with

$$
\mathbb{T}_{0, k}=d^{2 k}, \quad \mathbb{T}_{r+1, k}=d^{2(k+r+1)}
$$

- This is an example of a non-commutative Q-system equation.

Solution of the T-system for A_{r}

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!

Solution of the T-system for A_{r}

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$
\mathbb{Y}_{2 i}=\mathbb{T}_{i, 1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i, 0}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2} \quad, \mathbb{Y}_{2 i-1}=\mathbb{T}_{i, 0}^{-1} d^{-2} \mathbb{T}_{i, 1} \mathbb{T}_{i-1,1}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2}
$$

Solution of the T-system for A_{r}

$G_{r}=$

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$
\mathbb{Y}_{2 i}=\mathbb{T}_{i, 1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i, 0}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2} \quad, \mathbb{Y}_{2 i-1}=\mathbb{T}_{i, 0}^{-1} d^{-2} \mathbb{T}_{i, 1} \mathbb{T}_{i-1,1}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2}
$$

Theorem (Di Francesco, K.)

Solution of the T-system for A_{r}

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$
\mathbb{Y}_{2 i}=\mathbb{T}_{i, 1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i, 0}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2} \quad, \mathbb{Y}_{2 i-1}=\mathbb{T}_{i, 0}^{-1} d^{-2} \mathbb{T}_{i, 1} \mathbb{T}_{i-1,1}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}.

Solution of the T-system for A_{r}

$G_{r}=$

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$
\mathbb{Y}_{2 i}=\mathbb{T}_{i, 1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i, 0}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2} \quad, \mathbb{Y}_{2 i-1}=\mathbb{T}_{i, 0}^{-1} d^{-2} \mathbb{T}_{i, 1} \mathbb{T}_{i-1,1}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}.
- Linear recursion relation: $\sum_{j=0}^{r+1}(-1)^{j} C_{j} \mathbb{T}_{1, k-j}=0$.

Solution of the T-system for A_{r}

- $Z_{1,1}=$ paths from node 1 to itself on G_{r} with non-commutative weights \mathbb{Y}_{i}. Weighted paths respect non-commutative ordering!
- Nontrivial weights

$$
\mathbb{Y}_{2 i}=\mathbb{T}_{i, 1}^{-1} d^{-2} \mathbb{T}_{i+1,1} \mathbb{T}_{i, 0}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2} \quad, \mathbb{Y}_{2 i-1}=\mathbb{T}_{i, 0}^{-1} d^{-2} \mathbb{T}_{i, 1} \mathbb{T}_{i-1,1}^{-1} d^{2} \mathbb{T}_{i-1,0} d^{2}
$$

Theorem (Di Francesco, K.)

- Conserved quantities: $C_{i}=$ partition function of i hard particles on the medial graph of G_{r}.
- Linear recursion relation: $\sum_{j=0}^{r+1}(-1)^{j} C_{j} \mathbb{T}_{1, k-j}=0$.
- $\mathbb{T}_{1, k} \mathbb{T}_{1,0}^{-1}=\left(1+Z_{1,1} \mathbb{Y}_{1}\right)[k]$ (homogeneous component in \mathbb{Y}_{i} of degree k).

Example of non-commutative partition function

For A_{2} we have the following paths contributing to $\mathbb{T}_{1,3}$ on the graph G_{2}

$\mathbb{T}_{1,3} \mathbb{T}_{1,0}^{-1}=\left(1+Z_{1,1} \mathbb{Y}_{1}\right)[3]=Z_{1,1}[2] \mathbb{Y}_{1}=\left(\mathbb{Y}_{1}^{2}+\mathbb{Y}_{2} \mathbb{Y}_{1}+\mathbb{Y}_{1} \mathbb{Y}_{2}+\mathbb{Y}_{2}^{2}+\mathbb{Y}_{3} \mathbb{Y}_{2}+\mathbb{Y}_{4} \mathbb{Y}_{2}\right) \mathbb{Y}_{1}$.

Mutations of non-commutative weights

- There are many choices of initial conditions for the T-system: We limit ourselves to those described by Motzkin paths $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$. $\left(d^{2}\right.$-invariant $)$.

Mutations of non-commutative weights

- There are many choices of initial conditions for the T-system: We limit ourselves to those described by Motzkin paths $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$. $\left(d^{2}\right.$-invariant $)$.
- The variable $\mathbb{T}_{1, k+m_{1}} \mathbb{T}_{1, m_{1}}^{-1}$ as a function of $\mathbb{T}_{\mathbf{m}}$, the mutated data, is given by path partition function on G_{r} with new weights \mathbb{Z}_{i}

$$
\mathbb{Z}_{2 i}=\left(\mathbb{Y}_{2 i+1}\right)^{m_{i+1}-m_{i}} \mathbb{Y}_{2 i}, \quad \mathbb{Z}_{2 i-1}=\mathbb{Y}_{2 i-1}+ \begin{cases}-\mathbb{Y}_{2 i+1}^{-1} \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=-1 \\ \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Mutations of non-commutative weights

- There are many choices of initial conditions for the T-system: We limit ourselves to those described by Motzkin paths $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$. $\left(d^{2}\right.$-invariant $)$.
- The variable $\mathbb{T}_{1, k+m_{1}} \mathbb{T}_{1, m_{1}}^{-1}$ as a function of $\mathbb{T}_{\mathbf{m}}$, the mutated data, is given by path partition function on G_{r} with new weights \mathbb{Z}_{i}

$$
\mathbb{Z}_{2 i}=\left(\mathbb{Y}_{2 i+1}\right)^{m_{i+1}-m_{i}} \mathbb{Y}_{2 i}, \quad \mathbb{Z}_{2 i-1}=\mathbb{Y}_{2 i-1}+ \begin{cases}-\mathbb{Y}_{2 i+1}^{-1} \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=-1 \\ \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

Mutations of non-commutative weights

- There are many choices of initial conditions for the T-system: We limit ourselves to those described by Motzkin paths $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$. (d^{2}-invariant $)$.
- The variable $\mathbb{T}_{1, k+m_{1}} \mathbb{T}_{1, m_{1}}^{-1}$ as a function of $\mathbb{T}_{\mathbf{m}}$, the mutated data, is given by path partition function on G_{r} with new weights \mathbb{Z}_{i}

$$
\mathbb{Z}_{2 i}=\left(\mathbb{Y}_{2 i+1}\right)^{m_{i+1}-m_{i}} \mathbb{Y}_{2 i}, \quad \mathbb{Z}_{2 i-1}=\mathbb{Y}_{2 i-1}+ \begin{cases}-\mathbb{Y}_{2 i+1}^{-1} \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=-1 \\ \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

where \mathbb{Y}_{i} are given by the recursion: If $\mathbf{m}^{\prime}=\mathbf{m}+\varepsilon_{i}$ then $\mathbb{Y}_{j}\left(\mathbf{m}^{\prime}\right)=\mathbb{Y}_{j}(\mathbf{m})$ except for:

$$
\begin{aligned}
& \mathbb{Y}_{2 i-1}^{\prime}=\mathbb{Y}_{2 i-1}+\mathbb{Y}_{2 i} \\
& \mathbb{Y}_{2 i}^{\prime}=\mathbb{Y}_{2 i+1} \mathbb{Y}_{2 i}\left(\mathbb{Y}_{2 i-1}^{\prime}\right)^{-1} \\
& \mathbb{Y}_{2 i+1}^{\prime}=\mathbb{Y}_{2 i+1} \mathbb{Y}_{2 i-1}\left(\mathbb{Y}_{2 i-1}^{\prime}\right)^{-1}
\end{aligned}
$$

Mutations of non-commutative weights

- There are many choices of initial conditions for the T-system: We limit ourselves to those described by Motzkin paths $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right)$. (d^{2}-invariant $)$.
- The variable $\mathbb{T}_{1, k+m_{1}} \mathbb{T}_{1, m_{1}}^{-1}$ as a function of $\mathbb{T}_{\mathbf{m}}$, the mutated data, is given by path partition function on G_{r} with new weights \mathbb{Z}_{i}

$$
\mathbb{Z}_{2 i}=\left(\mathbb{Y}_{2 i+1}\right)^{m_{i+1}-m_{i}} \mathbb{Y}_{2 i}, \quad \mathbb{Z}_{2 i-1}=\mathbb{Y}_{2 i-1}+ \begin{cases}-\mathbb{Y}_{2 i+1}^{-1} \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=-1 \\ \mathbb{Y}_{2 i}, & m_{i+1}-m_{i}=1 \\ 0 & m_{i}-m_{i+1}=0\end{cases}
$$

where \mathbb{Y}_{i} are given by the recursion: If $\mathbf{m}^{\prime}=\mathbf{m}+\varepsilon_{i}$ then $\mathbb{Y}_{j}\left(\mathbf{m}^{\prime}\right)=\mathbb{Y}_{j}(\mathbf{m})$ except for:

$$
\left.\begin{array}{l}
\mathbb{Y}_{2 i-1}^{\prime}=\mathbb{Y}_{2 i-1}+\mathbb{Y}_{2 i} \\
\mathbb{Y}_{2 i}^{\prime}=\mathbb{Y}_{2 i+1} \mathbb{Y}_{2 i}\left(\mathbb{Y}_{2 i-1}^{\prime}\right)^{-1} \\
\mathbb{Y}_{2 i+1}^{\prime}=\mathbb{Y}_{2 i+1} \mathbb{Y}_{2 i-1}\left(\mathbb{Y}_{2 i-1}^{\prime}\right)^{-1} \\
\mathbb{Y}_{2 i+2}^{\prime}=\mathbb{Y}_{2 i+2} \mathbb{Y}_{2 i-1}\left(\mathbb{Y}_{2 i-1}^{\prime}\right)^{-1} \quad \text { if } m_{i}=m_{i-1}=m_{i+1}
\end{array}\right\}
$$

Mutation of weights.

Conclusion

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.

Conclusion

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the q-commuting Q-system is the quantum cluster algebra [Berenstein and Zelevinsky].

Conclusion

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the q-commuting Q-system is the quantum cluster algebra [Berenstein and Zelevinsky].
- Associated Y-systems can also be described in terms of cluster algebras: Periodicity conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution with this method yet).

Conclusion

- Integrability allows us to explicitly solve for the variables in terms of path partition functions.
- Non-commutative versions generalize: For example, the q-commuting Q-system is the quantum cluster algebra [Berenstein and Zelevinsky].
- Associated Y-systems can also be described in terms of cluster algebras: Periodicity conjecture of Zamolodchikov can be proved this way [Keller]. (No explicit solution with this method yet).
- Rank 2 completely non-commutative case related to the "wall crossing formulas" of Kontsevich and Soibelman.

