Session 2

Exercise 1. Bipartite maps, cut and join and KP hierarchy

The goal of the exercise is to prove that the partition function of bipartite maps - also alled Grothendieck dessins d'enfant - is a tau-function of the KP hierarchy, following a paper by Kazarian and Zograf (arXiv :1406.5976). We begin with some definitions.

Definition 1. A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

For instance, the following graphs are the same, but they define two different maps. The notion of face is well-defined for a map. On the left hand side the map has one face ; on the right hand side, the map has 3 faces (we count the external face as well) :

We are interested in bipartite maps :
Definition 2. A bipartite map is a map with two kinds of vertices (we forbid isolated vertices) : black vertices - and white vertices o, such that each edge is adjacent to one black vertex and one white vertex.

We can orient the edges of a bipartite map from white vertices to black vertices, and say that an edge is adjacent to a face if the latter stands on the left of the edge with the given orientation. The degree of a face of a bipartite map is the number of edges adjacent to the face. It is also the number of white (resp. black) corners around the face.

We denote by $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ the set of (non-necessarily connected) bipartite maps \mathbf{m} with n edges, N_{\bullet} (resp. N_{\circ}) black (resp. white) vertices, and f_{i} faces of degree i, and we enumerate those maps :

$$
\mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) \stackrel{\text { def }}{=} \sum_{\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)} \frac{1}{\# \operatorname{Aut}(\mathbf{m})}
$$

For instance, the bipartite map given above contributes to $\mathcal{N}(19,6,7,(1,2,1,0,1,1,0,0, \ldots))$ and has weight $u^{19} v_{\circ}^{7} v_{\bullet}^{6} p_{1} p_{2}^{2} p_{3} p_{5} p_{6}$.
By convention, $\mathcal{N}(0,0,0, \mathbf{0})=1$ (it counts the empty map). We build the partition function

$$
\begin{equation*}
\tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right) \stackrel{\text { def }}{=} \sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} \prod_{i} p_{i}^{f_{i}} \tag{1}
\end{equation*}
$$

The idea of the exercise is to find an equation satisfied by τ by removing an edge from a bipartite map.

1. Consider the following procedure : for any $n \geqslant 0$ and for any bipartite map with $n+1$ edges, choose one of the edges and consider that its weight is 1 (instead of u). Justify that enumerating the number of ways of doing so amounts to compute $\frac{\partial \tau}{\partial u}\left(u, v_{\bullet}, v_{0}, \mathbf{p}\right)$.
2. We now look at the same procedure as in question 1 , but in reverse direction : add a distinguished edge (of weight 1) to bipartites maps. There are several ways of doing so, and to see that, start with a bipartite map with n edges.
(a) First case. We want to add the distinguished edge (in blue) inside a face of degree $i+j-1$ in order to create two faces of degrees i and j, so that the degree i face stands on the left of the new edge :

Let $\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$; in how many ways can we add such an edge? In the remaining of this question, we note γ this number.
Deduce that, when running over the set $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$, the weighted number of maps with distinguished edge that we obtain is :

$$
\gamma \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N} \bullet v_{\circ}^{N_{\circ}} p_{i}^{f_{i}+1} p_{j}^{f_{j}+1} p_{i+j-1}^{f_{i+j-1}-1} \prod_{\ell \neq i, j, i+j-1} p_{\ell}^{f_{\ell}}
$$

Show that, summing over $n, N_{\bullet}, N_{\circ}, \mathbf{f}$ and i, j, we get:

$$
\sum_{i, j \geqslant 1}(i+j-1) p_{i} p_{j} \frac{\partial}{\partial p_{i+j-1}} \tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right)
$$

(b) Second case. We want to add the distinguished edge on a white vertex of a degree
i face and a black vertex of a degree j face, to obtain a face of degree $i+j+1$:

Following the same kind of steps as in question 2.(a), show that enumerating this kind of edge adjunction amounts to compute

$$
\sum_{i, j \geqslant 1} i j p_{i+j+1} \frac{\partial}{\partial p_{i}} \frac{\partial}{\partial p_{j}} \tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right)
$$

(c) Third case. The new edge is added to a white (resp. black) vertex of a face of degree i by creating also a new black (resp. white) vertex. The new face has degree $i+1$.

Find the operator to be applied to τ in this case.
(d) Fourth case. A new disconnected edge is added to the existing map. Find the operator to be applied to τ in this case.
3. Gathering questions 1 and 2, we obtain the Cut-and-join equation :

$$
\frac{\partial \tau}{\partial u}=A \cdot \tau
$$

where A is a sum of 4 explicit operators acting on τ. Give A.
4. Changing variables $t_{j} \stackrel{\text { def }}{=} \frac{p_{j}}{j}$, and using the boson-fermion correspondence, show that :

$$
\tau=\langle 0| \mathrm{e}^{A(t)} \mathrm{e}^{u\left(v_{\mathrm{o}} v_{\bullet} \alpha_{-1}+\left(v_{\mathrm{o}}+v_{\bullet}\right) \Lambda_{-1}+M_{-1}\right)}|0\rangle
$$

5. Deduce that τ is a solution of the KP hierarchy.

Actually, we just proved that strictly monotone Hurwitz numbers satisfy the KP hierarchy!

Solution: 1. For a map with n edges, there are n ways of choosing a distinguished edge. Therefore, when \mathbf{m} runs over $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$, we obtain $n \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ maps with distinguished edge. We compute the partition function of such maps by taking care of putting a weight u^{n-1} for the n edges (the distinguished edge has weight 1) :

$$
\begin{aligned}
\sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} n \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n-1} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} \prod_{i} p_{i}^{f_{i}} & =\frac{\partial}{\partial u} \sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} \prod_{i} p_{i}^{f_{i}} \\
& =\frac{\partial \tau}{\partial u}
\end{aligned}
$$

2.(a) For the first step, let $\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ and $i, j \geqslant 1$. There are f_{i+j-1} ways of choosing one face of degree $i+j-1$. Inside this face, there are $i+j-1$ ways of choosing a white corner. There is then a unique way of drawing an edge from this corner to a black corner of the same face so that the face on the left of the new edge has degree i.

The map that we obtain has $n+1$ edges (of total weight u^{n} since the new edge does not contribute) $; f_{i}+1$ faces of degree $i ; f_{j}+1$ faces of degree $j ; f_{i+j-1}-1$ faces of degree $i+j-1$; and we do not change the other quantities. Therefore the weighted count becomes :

$$
(i+j-1) f_{i+j-1} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} p_{i}^{f_{i}+1} p_{j}^{f_{j}+1} p_{i+j-1}^{f_{i+j-1}-1} \prod_{\ell \neq i, j, i+j-1} p_{\ell}^{f_{\ell}}
$$

Summing over i, j and $n, N_{\bullet}, N_{\circ}, \mathbf{f}$, we get :

$$
\begin{aligned}
\sum_{i, j \geqslant 1} \sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} & (i+j-1) f_{i+j-1} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet} N_{\bullet} v_{\circ}^{N_{\circ}} p_{i}^{f_{i}+1} p_{j}^{f_{j}+1} p_{i+j-1}^{f_{i+j-1}-1} \prod_{\ell \neq i, j, i+j-1} p_{\ell}^{f_{\ell}} \\
& =\sum_{i, j \geqslant 1}(i+j-1) p_{i} p_{j} \frac{\partial}{\partial p_{i+j-1}} \sum_{n, N_{\bullet}, N_{\circ}, f} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, f\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} \prod_{\ell} p_{\ell}^{f_{\ell}} \\
& =\sum_{i, j \geqslant 1}(i+j-1) p_{i} p_{j} \frac{\partial}{\partial p_{i+j-1}} \tau .
\end{aligned}
$$

2.(b) Let us do the same steps as in previous question. Let $\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ and $i, j \geqslant 1$ (suppose for simplicity that $i \neq j$). There are $f_{i} \times f_{j}$ ways of choosing 2 faces of degree i and j respectively. In the face of degree i (resp. j), there are i ways of choosing a white (resp. black) corner. Once those choices are made, we can draw the new edge! All in all, there are $f_{i} f_{j} i j$ choices for the distinguished new edge. Therefore, when running over $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$, we get $f_{i} f_{j} i j \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ maps.
We now put everything in a generating series, and we should be cautious that, by adding the new edge, we replaced two faces of degree i, j by a face of degree $i+j+1$:

$$
\sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} f_{i} f_{j} i j \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} p_{i}^{f_{i}-1} p_{j}^{f_{j}-1} p_{i+j+1}^{f_{i+j+1}+1} \prod_{\ell \neq i, j, i+j+1} p_{\ell}^{f_{\ell}}=i j p_{i+j+1} \frac{\partial}{\partial p_{i}} \frac{\partial}{\partial p_{j}} \tau
$$

2.(c) Let $\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{0}, \mathbf{f}\right)$, assume that we attach the new edge to a black vertex in a face of degree i. There are $i f_{i}$ ways of choosing the black corner. In the new map, there are now $f_{i}-1$ faces of degree $i, f_{i+1}+1$ faces of degree $i+1$, and $N_{\circ}+1$ white vertices. The effect of such an operation on generating function is thus $v_{\circ} i p_{i+1} \frac{\partial \tau}{\partial p_{i}}$.
In the same manner if we attach the new edge to a white vertex $v_{\bullet} i p_{i+1} \frac{\partial \tau}{\partial p_{i}}$.
Summing over i, the operator acting on τ is then

$$
\left(v_{\circ}+v_{\bullet}\right) \sum_{i \geqslant 1} i p_{i+1} \frac{\partial}{\partial p_{i}} \tau .
$$

2.(d) For the last one, the operator is simply multiplication by $v_{\circ} v_{\bullet} p_{1}$.
3. We described the same operation in two ways : one way in question 1 , that we put in the l.h.s., and another way in question 2 , that we gather in the r.h.s. :

$$
\frac{\partial \tau}{\partial u}=\underbrace{\left[v_{\circ} v_{\bullet} p_{1}+\left(v_{\circ}+v_{\bullet}\right) \sum_{i \geqslant 1} i p_{i+1} \frac{\partial}{\partial p_{i}}+\sum_{i, j \geqslant 1}(i+j-1) p_{i} p_{j} \frac{\partial}{\partial p_{i+j-1}}+i j p_{i+j+1} \frac{\partial}{\partial p_{i}} \frac{\partial}{\partial p_{j}}\right]}_{=A} \tau
$$

4. Let us carry out the change of variable. The cut-and-join equation becomes :

$$
\frac{\partial \tau}{\partial u}=\left[v_{0} v_{\bullet} t_{1}+\left(v_{0}+v_{\bullet}\right) \sum_{i \geqslant 1}(i+1) t_{i+1} \frac{\partial}{\partial t_{i}}+\sum_{i, j \geqslant 1} i j t_{i} t_{j} \frac{\partial}{\partial t_{i+j-1}}+(i+j+1) t_{i+j+1} \frac{\partial}{\partial t_{i}} \frac{\partial}{\partial t_{j}}\right] \tau .
$$

Let us denote by $|v\rangle \in \mathcal{F}=\Phi^{-1}(\tau)$ the preimage of τ under the boson-fermion isomorphism. From boson-fermion correspondence, we have :

$$
\begin{aligned}
\frac{\partial|v\rangle}{\partial u} & =[v_{0} v_{\bullet} \alpha_{-1}+\left(v_{0}+v_{\bullet}\right) \underbrace{\sum_{i \geqslant 1} \alpha_{-i-1} \alpha_{i}}_{L_{-1}}+\underbrace{\sum_{i, j \geqslant 1} \alpha_{-i} \alpha_{-j} \alpha_{i+j-1}+\alpha_{-i-j-1} \alpha_{i} \alpha_{j}}_{M_{-1}}]|v\rangle \\
& =\left[v_{0} v_{\bullet} \alpha_{-1}+\left(v_{0}+v_{\bullet}\right) L_{-1}+M_{-1}\right]|v\rangle
\end{aligned}
$$

Therefore :

$$
|v\rangle=\mathrm{e}^{u\left[v_{0} v_{\bullet} \alpha_{-1}+\left(v_{0}+v_{\bullet}\right) L_{-1}+M_{-1}\right]}|v\rangle_{u=0} .
$$

At $u=0$, only the empty map contributes to τ, so $\tau\left(0, v_{\bullet}, v_{0}, \mathbf{p}\right)=1 \Leftrightarrow|v\rangle_{u=0}=|0\rangle$.

$$
\tau=\langle 0| \mathrm{e}^{A(\mathbf{t})} \mathrm{e}^{u\left[v_{0} v_{\bullet} \alpha_{-1}+\left(v_{0}+v_{\mathbf{0}}\right) L_{-1}+M_{-1}\right]}|0\rangle
$$

5. The operators $\alpha_{-1}, L_{-1}, M_{-1}$ belong to $\widehat{g l(\infty)}$, so the partition function τ belongs to the orbit of the vacuum under the action of $\widehat{G L(\infty)}$: it satisfies the KP hierarchy !

Exercise 2. From Hirota to KP equation

Reminder : the Hirota equation for KP hierarchy can take this form

$$
\begin{equation*}
\underset{w=\infty}{\operatorname{Res} \mathrm{e}^{\sum_{j=1}^{\infty} w^{j}\left(t_{j}-s_{j}\right)} \tau\left(\mathbf{t}-\left[w^{-1}\right]\right) \tau\left(\mathbf{s}+\left[w^{-1}\right]\right)=0, ~} \tag{2}
\end{equation*}
$$

where $\left[w^{-1}\right]=\left(w^{-1}, \frac{w^{-2}}{2}, \frac{w^{-3}}{3}, \ldots\right)$.

1. Consider two functions f, g of infinitely many variables. Introduce the Hirota derivative as the following operator :

$$
\left.D_{k}(f \cdot g) \stackrel{\text { def }}{=} \frac{\partial}{\partial q_{k}} f\left(p_{1}, \ldots, p_{k-1}, p_{k}+q_{k}, p_{k+1, \ldots}\right) g\left(p_{1}, \ldots, p_{k-1}, p_{k}-q_{k}, p_{k+1, \ldots}\right)\right|_{q_{k}=0}
$$

By making the change of variables $t_{i}=p_{i}-q_{i}, s_{i}=p_{i}+q_{i}$, show that Hirota equation can be put in this form :

$$
\operatorname{ReS}_{w=\infty}\left(\mathrm{e}^{-2 \sum_{j=1}^{\infty} q_{j} w^{j}} \mathrm{e}^{-\sum_{j=1}^{\infty}\left(q_{j}+\frac{1}{j w^{j}}\right) D_{j}}\right) \tau \cdot \tau=0 .
$$

2. Show that applying Hirota derivatives an odd number of times on $\tau \cdot \tau$ yields 0 .
3. Consider that $q_{k}=q \delta_{k, 1}$. We can view (2) as an infinite set of equations, one for each power of q.
Prove that the coefficient of q^{3} gives the following equation :

$$
\begin{equation*}
\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau \cdot \tau=0 \tag{3}
\end{equation*}
$$

4. Writing $\tau=\mathrm{e}^{F}$, rewrite (3) as an equation satisfied by F (the KP equation).

Solution: 1. (2) takes the following shape :

$$
\begin{equation*}
\underset{w=\infty}{\operatorname{Res}^{-2} \sum_{j=1}^{\infty} q_{j} w^{j}} \tau\left(\mathbf{p}-\mathbf{q}-\left[w^{-1}\right]\right) \tau\left(\mathbf{p}+\mathbf{q}+\left[w^{-1}\right]\right)=0 \tag{4}
\end{equation*}
$$

From the definition of Hirota derivative :

$$
f\left(p_{1}, \ldots, p_{k-1}, p_{k}+q_{k}, p_{k+1}, \ldots\right) g\left(p_{1}, \ldots, p_{k-1}, p_{k}+q_{k}, p_{k+1}, \ldots\right)=\mathrm{e}^{q_{k} D_{k}} f(\mathbf{p}) g(\mathbf{q})
$$

Therefore (4) can be written as

$$
\begin{equation*}
\underset{w=\infty}{\operatorname{Res}^{-2 \sum_{j=1}^{\infty} q_{j} w^{j}} \mathrm{e}^{-\sum_{k=1}^{\infty}\left(q_{k}+\frac{w^{-k}}{k}\right) D_{k}} \tau \cdot \tau(\mathbf{p})=0} \tag{5}
\end{equation*}
$$

2. We observe that $\tau(\mathbf{p}+\mathbf{q}) \tau(\mathbf{p}-\mathbf{q})$ is even in \mathbf{q}, so applying Hirota derivatives an odd number of times to $\tau \cdot \tau$ gives zero.
3. We start from (5) with $q_{k}=q \delta_{k, 1}$:

$$
\underset{w=\infty}{\operatorname{ReS}^{-2 q w}} \mathrm{e}^{-q D_{1}-\sum_{k=1}^{\infty} \frac{w^{-k}}{k} D_{k}} \tau \cdot \tau(\mathbf{p})=0
$$

The coefficient of q^{3} in the integrand is a Laurent series in w^{-1}. Inside thies series, we are interested in the coefficient of w^{-1} since we take the residue. The terms of the form $q^{3} w^{-1}$ in the integrand are :

$$
\begin{aligned}
& {\left[\frac{(-2 q w)^{3}}{6}\left(\frac{w^{-4}}{3} D_{3} D_{1}+\frac{w^{-4}}{4} D_{2}^{2}+\frac{w^{-4}}{24} D_{1}^{4}\right)+\frac{(-2 q w)^{2}}{2}\left(\frac{q w^{-3}}{3} D_{3} D_{1}+\frac{q w^{-3}}{6} D_{1}^{4}\right)\right.} \\
& \left.+(-2 q w)\left(\frac{q^{2}}{2} \frac{1}{2} D_{1}^{4}\right)+\left(\frac{q^{3}}{6} w^{-1} D_{1}^{4}\right)\right] \tau \cdot \tau=\frac{q^{3} w^{-1}}{9}\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau \cdot \tau
\end{aligned}
$$

(from question 2. we consider only the terms with an even number of Hirota derivatives). We obtain the desired equation.
4. We obtain the following equation

$$
4 \frac{\partial^{2} F}{\partial p_{3} \partial p_{1}}-3 \frac{\partial^{2} F}{\partial p_{2}^{2}}-6\left(\frac{\partial^{2} F}{\partial p_{1}^{2}}\right)^{2}-\frac{\partial^{4} F}{\partial p_{1}^{4}}=0
$$

Hint :

$$
D f \cdot g=f^{\prime} g-f g^{\prime}, \quad D^{2} f \cdot g=f^{\prime \prime} g+f g^{\prime \prime}-2 f^{\prime} g^{\prime}, \quad \ldots
$$

