Session 1

Exercise 1. Wick's Theorem

For i = 1, ..., k, set :

$$v_{n_i} = \sum_{n \ge 0} a_{i,n} \psi_{n_i - n}, \qquad w_{m_i}^* = \sum_{n \ge 0} b_{i,n} \psi_{m_i + n}^*.$$

- 1. Show that for all $i, j \in \{1, ..., k\}, \langle 0|v_{n_i}w_{m_j}^*|0\rangle$ is well-defined.
- 2. By induction, show Wick's theorem:

$$\langle 0|v_{n_1}\dots v_{n_k}w_{m_k}^*\dots w_{m_1}^*|0\rangle = \det_{i,j=1,\dots,k} \langle 0|v_{n_j}w_{m_i}^*|0\rangle.$$
 (1)

Hint: justify that we can assume that $a_{i,n}=0$ if $n_i-n>0$ and $b_{j,n}=0$ if $m_j+n>0$; then anticommute $w_{m_k}^*$ to the left.

Solution: 1. Since $\langle 0|\psi_i\psi_i^*|0\rangle = \delta_{i,j}\delta_{j<0}$, only a finite number of terms contribute to $\langle 0|v_{n_i}w_{m_i}^*|0\rangle$:

$$\langle 0|v_{n_i}w_{m_j}^*|0\rangle = \begin{cases} 0 \text{ if } m_j>0,\\ -m_j-\frac{1}{2}\\ \sum\limits_{n=0}^{}a_{i,n_i-n}b_{j,n}\delta_{n_i-n,m_j+n} \text{ otherwise.} \end{cases}$$

2. First, if $i \in \mathbb{Z}_{\geq 0} + \frac{1}{2}$, $\langle 0 | \psi_i = 0$ and $\psi_i^* | 0 \rangle = 0$. Therefore, only the ψ_i s and ψ_i^* s with negative indices will contribute to the vacuum expectation value, so that we can assume that $a_{i,n} = 0$ if $n_i - n > 0$ and $b_{i,n} = 0$ if $m_i + n > 0$.

In those conditions, the following identity holds:

$$v_{n_i} w_{m_i}^* = \langle 0 | v_{n_i} w_{m_i}^* | 0 \rangle - w_{m_i}^* v_{n_i}. \tag{2}$$

Now, let us prove Wick's theorem. For k=1, the identity is obviously true. Let us suppose that the identity holds up to order k-1. We apply (2) successively to $v_{n_k}w_{m_k}^*$, $v_{n_{k-1}}w_{m_k}^*,\ldots,v_{n_1}w_{m_k}^*$ in order to place $w_{m_k}^*$ on the left of the vacuum expectation value (where we have $\langle 0|w_{m_k}^*=0\rangle$). We get :

$$\langle 0|v_{n_1}\dots v_{n_k}w_{m_k}^*\dots w_{m_1}^*|0\rangle = \langle 0|v_{n_k}w_{m_k}^*|0\rangle\langle 0|v_{n_1}\dots v_{n_{k-1}}w_{m_{k-1}}^*\dots w_{m_1}^*|0\rangle - \langle 0|v_{n_1}\dots v_{n_{k-1}}w_{m_k}^*v_{n_k}w_{m_{k-1}}^*\dots w_{m_1}^*|0\rangle = \dots = \sum_{j=0}^{k-1} (-1)^j \langle 0|v_{n_{k-j}}w_{m_k}^*|0\rangle\langle 0|v_{n_1}\dots \widehat{v_{n_{k-j}}}\dots v_{n_k}w_{m_{k-1}}^*\dots w_{m_1}^*|0\rangle$$

By induction hypothesis:

$$\langle 0|v_{n_1}\dots\widehat{v_{n_{k-j}}}\dots v_{n_k}w_{m_{k-1}}^*\dots w_{m_1}^*|0\rangle = \det_{\substack{i,\ell=1,\dots,k\\i\neq k,\ell\neq k-j}} \langle 0|v_{n_\ell}w_{m_i}^*|0\rangle.$$

In the end, we recognise the expansion of the determinant with respect to a line, and we obtain Wick's theorem.

Exercise 2. We have defined $\alpha_n \stackrel{\text{def}}{=} \sum_{j \in \mathbb{Z} + \frac{1}{2}} : \psi_{j-n} \psi_j : \text{ and } A(\mathbf{t}) \stackrel{\text{def}}{=} \sum_{n \geqslant 1} t_n \alpha_n.$

1. Show that, for all $k \in \mathbb{Z} + \frac{1}{2}$ and $n \in \mathbb{Z}_{>0}$:

$$[\alpha_n, \psi_k] = \psi_{k-n}, \qquad [\alpha_n, \psi_k^*] = -\psi_{k+n}^*.$$

2. Recall that the complete symmetric functions $h_n(\mathbf{t})$ are characterised by the equality $e^{\sum_{i\geqslant 1}t_iz^i}=\sum_{n\geq 0}h_n(\mathbf{t})z^n$ in $\mathbb{C}[\mathbf{t}][[z]]$. Show that for n>0:

$$h_n(\mathbf{t}) = \sum_{m=1}^n \frac{1}{m!} \sum_{\substack{d_1, \dots, d_m \geqslant 1 \\ d_1 + \dots + d_m = n}} t_{d_1} \dots t_{d_m}.$$

3. Using Hadamard identity

$$e^{A(\mathbf{t})}\psi_k^{(*)}e^{-A(\mathbf{t})} = \sum_{n\geqslant 0} \frac{1}{n!} \underbrace{\left[A(\mathbf{t}), \left[A(\mathbf{t}), \dots \left[A(\mathbf{t}), \psi_k^{(*)}\right] \dots\right]\right]}_{n \text{ commutations}}$$

and the previous questions, deduce:

$$e^{A(\mathbf{t})}\psi_k e^{-A(\mathbf{t})} = \sum_{n\geqslant 0} h_n(\mathbf{t})\psi_{k-n}, \qquad e^{A(\mathbf{t})}\psi_k^* e^{-A(\mathbf{t})} = \sum_{n\geqslant 0} h_n(-\mathbf{t})\psi_{k+n}^*.$$
(3)

Solution: 1. For n > 0, $: \psi_{j-n}\psi_j^* := \psi_{j-n}\psi_j^*$. We use $\{\psi_i\psi_j^*\} = \delta_{i,j}$ for $i, j \in \mathbb{Z} + \frac{1}{2}$:

$$[\alpha_n, \psi_k] = \sum_{j \in \mathbb{Z} + \frac{1}{2}} \left(\psi_{j-n} \psi_j^* \psi_k - \psi_k \psi_{j-n} \psi_j^* \right) = \sum_{j \in \mathbb{Z} + \frac{1}{2}} \left(\delta_{k,j} \psi_{j-n} \underbrace{-\psi_{j-n} \psi_k \psi_j^* - \psi_k \psi_{j-n} \psi_j^*}_{\text{cancel out}} \right)$$
$$= \psi_{k-n}.$$

Similarly for ψ_k^* .

2. We need to identify the coefficient of z^n in order to get h_n :

$$e^{\sum_{i\geqslant 1} t_i z^i} = \sum_{m=0}^{\infty} \frac{1}{m!} \left(\sum_{i=1}^{\infty} t_i z^i\right)^m = \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{\substack{d_1, \dots, d_m \geqslant 1 \\ d_1 + \dots + d_m = n}} t_{d_1} \dots t_{d_m} z^{d_1 + \dots + d_m}$$

$$= \sum_{n\geqslant 0} \left(\sum_{m=0}^{n} \frac{1}{m!} \sum_{\substack{d_1, \dots, d_m \geqslant 1 \\ d_1 + \dots + d_m = n}} t_{d_1} \dots t_{d_m}\right) z^n = \sum_{n\geqslant 0} h_n(\mathbf{t}) z^n.$$

3. We show the result for ψ_k , the computations transpose easily to ψ_k^* . From question 1, we have $[A(\mathbf{t}), \psi_k] = \sum_{n \ge 1} t_n \psi_{k-n}$. Therefore:

$$\mathbf{e}^{A(\mathbf{t})}\psi_{k}\mathbf{e}^{-A(\mathbf{t})} = \sum_{m\geqslant 0} \frac{1}{m!} \underbrace{\left[A(\mathbf{t}), \left[A(\mathbf{t}), \dots \left[A(\mathbf{t}), \psi_{k}\right] \dots \right]\right]}_{m \text{ commutations}}$$

$$= \sum_{m\geqslant 0} \frac{1}{m!} \sum_{\substack{d_{1},\dots,d_{m}\geqslant 1}} t_{d_{1}} \dots t_{d_{m}} \psi_{k-d_{1}-\dots-d_{m}}$$

$$= \sum_{n\geqslant 0} \left(\sum_{m=0}^{n} \frac{1}{m!} \sum_{\substack{d_{1},\dots,d_{m}\geqslant 1\\d_{1}+\dots+d_{m}=n}} t_{d_{1}} \dots t_{d_{m}}\right) \psi_{k-n}.$$

$$= h_{n}(\mathbf{t}) \text{ (question 2)}$$

Exercise 3. Schur polynomials and the boson-fermion correspondence.

The isomorphism between the fermionic and the bosonic Fock spaces is:

$$\Phi: \ \mathcal{F} \longrightarrow \mathcal{B}[z, z^{-1}]$$
$$|v\rangle \longmapsto \sum_{\ell \in \mathbb{Z}} z^{\ell} \langle \ell | e^{A(\mathbf{t})} | v \rangle.$$

The goal of the exercise is to show that, for a partition λ , $\Phi(|0,\lambda\rangle)(\mathbf{t}) = s_{\lambda}(\mathbf{t})$, where the s_{λ} are the Schur polynomials.

Let $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_{\ell(\lambda)})$ be a partition and denote by d the number of diagonal boxes. We recall the Frobenius notation for the partition $\lambda = (\alpha_1, \dots, \alpha_d | \beta_1, \dots, \beta_d)$, where

- α_i is the number of boxes in the ith column strictly under the diagonal;
 β_j is the number of boxes in the jth line strictly on the right of the diagonal.
- 1. Show that

$$|0,\lambda\rangle = (-1)^{\alpha_1 + \dots + \alpha_d} \psi_{\beta_1 + \frac{1}{2}} \dots \psi_{\beta_d + \frac{1}{2}} \psi_{-\alpha_d - \frac{1}{2}}^* \dots \psi_{-\alpha_1 - \frac{1}{2}}^* |0\rangle.$$

2. Use Wick's theorem (1) and the conjugation formulas (3) to show that :

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = (-1)^{\alpha_1 + \dots + \alpha_d} \det_{i,j=1,\dots,d} \sum_{\ell=0}^{\alpha_i} h_{\beta_j + \ell + 1}(\mathbf{t}) h_{\alpha - \ell}(-\mathbf{t}).$$

3. Pieri's rule allows to express the the Schur polynomial of a hook diagram (a partition of the form $(\beta + 1, 1^{\alpha})$, or $(\alpha | \beta)$ in the Frobenius notation), while Giambelli's formula expresses the Schur polynomial of a partition in terms of Schur polynomials of hook diagrams:

$$s_{(\alpha|\beta)}(\mathbf{t}) = (-1)^{\alpha} \sum_{\ell=0}^{\alpha} h_{\beta+\ell+1}(\mathbf{t}) h_{\alpha-\ell}(-\mathbf{t}) \quad \text{(Pieri's rule)},$$
$$s_{(\alpha_1 \dots \alpha_d|\beta_1 \dots \beta_d)}(\mathbf{t}) = \det_{i,j=1,\dots,d} s_{(\alpha_i|\beta_j)}(\mathbf{t}) \quad \text{(Giambelli)}.$$

Use those identities to show that $\Phi(|0,\lambda\rangle)(\mathbf{t}) = s_{\lambda}(\mathbf{t})$.

Solution: 1. Let $\lambda = (\alpha_1, \dots, \alpha_d | \beta_1, \dots, \beta_d)$. We want to produce such a state by applying fermionic operators on the vacuum:

We begin with the left part of the partition by acting with ψ_j^* on $|0\rangle$ in order to remove black stones from the Maya diagram. We first need to remove the black stone at position $-\alpha_1 - \frac{1}{2}$, by applying $(-1)^{\alpha_1} \psi_{-\alpha_1 - \frac{1}{2}}^*$. This will produce the state:

Doing the same for the stones at positions $-\alpha_2 - \frac{1}{2}, \ldots, -\alpha_d - \frac{1}{2}$, we get the state $(-1)^{\alpha_1 + \cdots + \alpha_d} \psi^*_{-\alpha_d - \frac{1}{2}} \ldots \psi^*_{-\alpha_1 - \frac{1}{2}} |0\rangle$:

Then, we add black stones on the right part of the Maya diagram by applying successively $\psi_{\beta_d+\frac{1}{2}},\ldots,\psi_{\beta_1+\frac{1}{2}}$ (there is no sign issue here), in order to get the desired Maya diagram.

2. From question 1, we have:

$$\begin{split} \Phi\big(|0,\lambda\rangle\big)(\mathbf{t}) &= (-1)^{\alpha_1 + \dots + \alpha_d} \langle 0| \mathrm{e}^{A(\mathbf{t})} \psi_{\beta_1 + \frac{1}{2}} \dots \psi_{\beta_d + \frac{1}{2}} \psi_{-\alpha_d - \frac{1}{2}}^* \dots \psi_{-\alpha_1 - \frac{1}{2}}^* |0\rangle \\ &= (-1)^{\alpha_1 + \dots + \alpha_d} \langle 0| \mathrm{e}^{A(\mathbf{t})} \psi_{\beta_1 + \frac{1}{2}} e^{-A(\mathbf{t})} \dots e^{A(\mathbf{t})} \psi_{\beta_d + \frac{1}{2}} e^{-A(\mathbf{t})} e^{A(\mathbf{t})} \psi_{-\alpha_d - \frac{1}{2}}^* e^{-A(\mathbf{t})} \\ &\qquad \qquad \dots e^{A(\mathbf{t})} \psi_{-\alpha_1 - \frac{1}{2}}^* e^{-A(\mathbf{t})} e^{A(\mathbf{t})} |0\rangle \end{split}$$

(we restrict to $\langle 0|$ since zero charge states are sent to z^0 polynomials under Φ).

For $i \in \{1, \dots, d\}$, we define $v_{\beta_i + \frac{1}{2}}, w^*_{-\alpha_i - \frac{1}{2}}$:

$$v_{\beta_i + \frac{1}{2}} = e^{A(\mathbf{t})} \psi_{\beta_i + \frac{1}{2}} e^{-A(\mathbf{t})}, \qquad w^*_{-\alpha_i - \frac{1}{2}} = e^{A(\mathbf{t})} \psi^*_{-\alpha_i - \frac{1}{2}} e^{-A(\mathbf{t})}.$$

Therefore we can recast the polynomial to compute as:

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = (-1)^{\alpha_1 + \dots + \alpha_d} \langle 0 | v_{\beta_1 + \frac{1}{2}} \dots v_{\beta_d + \frac{1}{2}} w_{-\alpha_d - \frac{1}{2}}^* \dots w_{-\alpha_1 - \frac{1}{2}}^* \underbrace{e^{A(\mathbf{t})} | 0 \rangle}_{-|0\rangle}$$

We now apply Wick's theorem (1) (we justify that vs and ws have the same shape as in Exercise 1 in a minute):

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = (-1)^{\alpha_1 + \dots + \alpha_d} \det_{i,j=1,\dots,d} \langle 0|v_{\beta_j + \frac{1}{2}} w_{-\alpha_i - \frac{1}{2}}^*|0\rangle.$$

From the conjugation relations (3), we get

$$v_{\beta_i + \frac{1}{2}} = \sum_{k \ge 0} h_k(\mathbf{t}) \psi_{\beta_i + \frac{1}{2} - k}, \qquad w^*_{-\alpha_i - \frac{1}{2}} = \sum_{\ell \ge 0} h_\ell(-\mathbf{t}) \psi^*_{-\alpha_i - \frac{1}{2} + \ell},$$

(this justifies that the vs and ws have the same shape as in Exercise 1). Therefore

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = (-1)^{\alpha_1 + \dots + \alpha_d} \det_{i,j=1,\dots,d} \sum_{k,\ell\geqslant 0} h_k(\mathbf{t}) h_\ell(-\mathbf{t}) \langle 0 | \psi_{\beta_j + \frac{1}{2} - k} \psi^*_{-\alpha_i - \frac{1}{2} + \ell} | 0 \rangle.$$

We have $\psi_j^*|0\rangle = 0$ if j > 0, so we can restrict the sum over ℓ between 0 and α . Using $\langle 0|\psi_i\psi_j^*|0\rangle = \delta_{i,j}\delta_{j<0}$ and the multilinearity of the determinant, we can recast the last expression into:

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = \det_{i,j=1,\dots,d} (-1)^{\alpha_i} \sum_{\ell=0}^{\alpha} h_{\beta_j+\ell+1}(\mathbf{t}) h_{\alpha-\ell}(-\mathbf{t}).$$

3. By straightforward application of Pieri's rule and Giambelli's formula :

$$\Phi(|0,\lambda\rangle)(\mathbf{t}) = \det_{i,j=1,\dots,d} (-1)^{\alpha_i} \sum_{\ell=0}^{\alpha} h_{\beta_j+\ell+1}(\mathbf{t}) h_{\alpha-\ell}(-\mathbf{t})$$

$$\stackrel{\text{Pieri}}{=} \det_{i,j=1,\dots,d} s_{(\alpha_i|\beta_j)}(\mathbf{t}) \stackrel{\text{Giambelli}}{=} s_{\lambda}(\mathbf{t}).$$

Exercise 4. Vertex operators

Reminder: we defined the vertex operators in \mathcal{F} as

$$\psi(u) \stackrel{\text{def}}{=} \sum_{j \in \mathbb{Z} + \frac{1}{2}} \psi_j u^{-j - \frac{1}{2}}, \qquad \psi^*(u) \stackrel{\text{def}}{=} \sum_{j \in \mathbb{Z} + \frac{1}{2}} \psi_j^* u^{-j - \frac{1}{2}}.$$

We stated that, under the boson-fermion correspondence, the images of $\psi(u)$, $\psi^*(u)$ in $\mathcal{B}[z,z^{-1}]$ is

$$\Psi(u) \stackrel{\mathrm{def}}{=} \mathrm{e}^{\xi(\mathbf{t},u^{-1})} \mathrm{e}^{-\xi(\widetilde{\partial},u)} z \, u^{-C-1}, \qquad \Psi^*(u) \stackrel{\mathrm{def}}{=} \mathrm{e}^{-\xi(\mathbf{t},u)} \mathrm{e}^{\xi(\widetilde{\partial},u^{-1})} z^{-1} \, u^{-C-1},$$

where $\xi(\mathbf{t}, u) \stackrel{\text{def}}{=} \sum_{k \geq 1} t_k u^k$, $\widetilde{\partial} \stackrel{\text{def}}{=} \left(\frac{\partial}{\partial t_1}, \frac{1}{2} \frac{\partial}{\partial t_2}, \frac{1}{3} \frac{\partial}{\partial t_3}, \dots \right)$, and $u^{-C} : z^{\ell} f(\mathbf{t}) \to u^{-\ell} z^{\ell} f(\mathbf{t})$. The goal of this exercise is to prove the previous statement for $\Psi(u)$.

Wick's theorem for the vertex operators

$$\langle \ell | \psi(p_1) \dots \psi(p_n) \psi^*(q_n) \dots \psi^*(q_1) | \ell \rangle = \det_{i,j=1,\dots,n} \frac{1}{1 - p_i q_j} \frac{1}{p_i^{\ell} q_j^{\ell}}$$

$$= \frac{1}{(p_1 \dots p_n)^{\ell+1} (q_1 \dots q_n)^{\ell}} \frac{\prod_{1 \leq i < j \leq n} \left(\frac{1}{p_j} - \frac{1}{p_i}\right) (q_i - q_j)}{\prod_{1 \leq i,j \leq n} \left(\frac{1}{p_i} - q_j\right)}. \tag{4}$$

1. Show that

$$e^{A(\mathbf{t})}\psi(u)e^{-A(\mathbf{t})} = e^{\xi(\mathbf{t},u^{-1})}\psi(u), \tag{5}$$

$$e^{-\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} \psi(p) e^{\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} = \left(1 - \frac{u}{p}\right) \psi(p),$$

$$e^{-\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} \psi^*(q) e^{\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} = \frac{1}{1 - uq} \psi^*(q).$$
(6)

Use (5) to show that:

$$\Phi(\psi(u)|v\rangle)(\mathbf{t}) = e^{\xi(\mathbf{t},u^{-1})} \sum_{\ell \in \mathbb{Z}} z^{\ell} \langle \ell | \psi(u) e^{A(\mathbf{t})} | v \rangle.$$

2. Prove the following:

$$\Psi(u)\Phi(|v\rangle)(\mathbf{t}) = e^{\xi(\mathbf{t},u^{-1})} \sum_{\ell \in \mathbb{Z}} z^{\ell} u^{-\ell} \langle \ell - 1| e^{-\sum_{k \geqslant 1} \frac{u^k}{k} \alpha_k} e^{A(\mathbf{t})} |v\rangle.$$

It suffices then to show: $\langle \ell | \psi(u) | w \rangle = u^{-\ell} \langle \ell - 1 | e^{-\sum_{k \geqslant 1} \frac{u^k}{k} \alpha_k} | w \rangle \ \forall \ell \in \mathbb{Z}, | w \rangle \in \mathcal{F}.$

3. Suppose that $|w\rangle = \psi(p_2) \dots \psi(p_n) \psi^*(q_n) \dots \psi^*(q_1) |\ell\rangle$. Use (6) to show that :

$$u^{-\ell} \langle \ell - 1 | e^{-\sum_{k \geqslant 1} \frac{u^k}{k} \alpha_k} | w \rangle = u^{-\ell - 1} \frac{\prod_{i=2}^n \left(\frac{1}{u} - \frac{1}{p_i} \right)}{\prod_{j=1}^n \left(\frac{1}{u} - q_j \right)} \operatorname{Res}_{p_1 = 0} p_1^{\ell - 1} \langle \ell | \psi(p_1) \dots \psi(p_n) \psi^*(q_n) \dots \psi^*(q_1) | \ell \rangle dp_1.$$

4. Use Wick's formula (4) to prove that for all $\ell \in \mathbb{Z}$:

$$\langle \ell | \psi(u)\psi(p_2)\dots\psi(p_n)\psi^*(q_n)\dots\psi^*(q_1) | \ell \rangle =$$

$$u^{-\ell-1} \frac{\prod\limits_{i=2}^{n} \left(\frac{1}{u} - \frac{1}{p_i}\right)}{\prod\limits_{j=1}^{n} \left(\frac{1}{u} - q_j\right)} \operatorname{Res}_{p_1=0} p_1^{\ell-1} \langle \ell | \psi(p_1)\dots\psi(p_n)\psi^*(q_n)\dots\psi^*(q_1) | \ell \rangle dp_1.$$

Conclude.

Solution: 1. The computations are similar to the second question of exercise 2. For (5), we get :

$$\begin{split} \mathrm{e}^{A(\mathbf{t})} \psi(u) \mathrm{e}^{-A(\mathbf{t})} &= \sum_{k \in \mathbb{Z} + \frac{1}{2}} u^{-k - \frac{1}{2}} \mathrm{e}^{A(\mathbf{t})} \psi_k \mathrm{e}^{-A(\mathbf{t})} \\ &= \sum_{k \in \mathbb{Z} + \frac{1}{2}} \sum_{n \in \mathbb{Z}_{\geqslant 0}} u^{-k - \frac{1}{2}} h_n(\mathbf{t}) \psi_{k - n} \\ &= \sum_{n \geqslant 0} h_n(\mathbf{t}) u^{-n} \sum_{k \in \mathbb{Z} + \frac{1}{2}} u^{-k - \frac{1}{2}} \psi_k = \mathrm{e}^{\xi(\mathbf{t}, u^{-1})} \psi(u). \end{split}$$

For (6), let us do the computation for $\psi(p)$:

$$e^{-\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} \psi(p) e^{\sum_{k\geqslant 1} \frac{u^k}{k} \alpha_k} = \sum_{i\in\mathbb{Z}+\frac{1}{2}} p^{-i-\frac{1}{2}} \sum_{m\in\mathbb{Z}_{\geqslant 0}} \frac{1}{m!} \sum_{d_1,\dots,d_m\geqslant 1} \frac{-u^{d_1}}{d_1} \dots \frac{-u^{d_m}}{d_m} \psi_{i-d_1-\dots-d_m}$$

$$= \sum_{i\in\mathbb{Z}+\frac{1}{2}} p^{-i-\frac{1}{2}} \sum_{n\in\mathbb{Z}_{\geqslant 0}} h_n \Big(-u, \frac{-u^2}{2}, \frac{-u^3}{3}, \dots\Big) \psi_{i-n}$$

$$= e^{-\sum_{k\geqslant 1} \frac{1}{k} \frac{u^k}{p^k}} \sum_{i\in\mathbb{Z}+\frac{1}{2}} p^{-i-\frac{1}{2}} \psi_i = \Big(1-\frac{u}{p}\Big) \psi(p).$$

Now:

$$\Phi(\psi(u)|v\rangle)(\mathbf{t}) = \sum_{\ell \in \mathbb{Z}} z^{\ell} \langle \ell | e^{A(\mathbf{t})} \psi(u) | v \rangle \stackrel{(5)}{=} \sum_{\ell \in \mathbb{Z}} z^{\ell} \langle \ell | e^{\xi(\mathbf{t}, u^{-1})} \psi(u) e^{A(\mathbf{t})} | v \rangle.$$

2. From the formula of $\Psi(u)$:

$$\begin{split} \Psi(u)\Phi(|v\rangle)(\mathbf{t}) = & \mathrm{e}^{\xi(\mathbf{t},u^{-1})} \sum_{\ell \in \mathbb{Z}} z^{\ell+1} u^{-\ell-1} \langle \ell | \mathrm{e}^{-\sum_{k \geqslant 1} \frac{u^k}{k} \frac{\partial}{\partial t_k}} \mathrm{e}^{\sum_{n \geqslant 1} t_n \alpha_n} |v\rangle \\ = & \mathrm{e}^{\xi(\mathbf{t},u^{-1})} \sum_{\ell \in \mathbb{Z}} z^\ell u^{-\ell} \langle \ell - 1 | \mathrm{e}^{-\sum_{k \geqslant 1} \frac{u^k}{k} \alpha_k} \mathrm{e}^{A(\mathbf{t})} |v\rangle \end{split}$$

where the second equality comes from $\frac{\partial}{\partial t_k} e^{\sum_{n\geqslant 1} t_n \alpha_n} = \alpha_n$ and the fact that the α_n s commute with eachother for $n\geqslant 1$.

3. We use the conjugation relations (6) to commute $e^{-\sum_{k\geqslant 1} \frac{u^k}{k}\alpha_k}$ on the right :

$$u^{-\ell} \langle \ell - 1 | e^{-\sum_{k \ge 1} \frac{u^k}{k} \alpha_k} | w \rangle = u^{-\ell} \underbrace{\prod_{i=2}^n \left(1 - \frac{u}{p_i} \right)}_{n} \langle \ell - 1 | \psi(p_2) \dots \psi(p_n) \psi^*(q_n) \dots \psi^*(q_1) \underbrace{e^{-\sum_{k \ge 1} \frac{u^k}{k} \alpha_k} | \ell \rangle}_{= | \ell \rangle}$$

We then transform the products to get the correct shape, notice also that $\langle \ell - 1 | = \langle \ell | \psi_{\ell - \frac{1}{2}},$ so we get :

$$u^{-\ell} \langle \ell - 1 | e^{-\sum_{k \ge 1} \frac{u^k}{k} \alpha_k} | w \rangle = u^{-\ell - 1} \frac{\prod_{i=2}^n \left(\frac{1}{u} - \frac{1}{p_i} \right)}{\prod_{j=1}^n \left(\frac{1}{u} - q_j \right)} \langle \ell | \psi_{\ell - \frac{1}{2}} \psi(p_2) \dots \psi(p_n) \psi^*(q_n) \dots \psi^*(q_1) | \ell \rangle.$$

Last, we remark that $\psi_{\ell-\frac{1}{2}}$ is the coefficient of $p_1^{-\ell}$ in $\psi(p_1)$, so we have

$$\psi_{\ell-\frac{1}{2}} = \operatorname{Res}_{p_1=0} p_1^{\ell-1} \psi(p_1) dp_1$$

and this yields the result.

4. This is a straight application of (4). We then obtain for all $ell \in \mathbb{Z}, |w\rangle \in \mathcal{F}$:

$$\langle \ell | \psi(u) | w \rangle = u^{-\ell} \langle \ell - 1 | e^{-\sum_{k \ge 1} \frac{u^k}{k} \alpha_k} | w \rangle$$

and this proves that $\Phi(\psi(u)) = \Psi(u)$.