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Exercise 1. Wick’s Theorem
Fori=1,... k, set:
* *
Up; = Z @i nPn;—n, Wy = Z bi,nwmi—i-n'
n=0 n=0

1. Show that for all 4, j € {1,...,k}, (Olvn,wy,,[0) is well-defined.
2. By induction, show Wick’s theorem :

(Ot Vg W -, |0) = | et (Ol [0): (1)

Hint : justify that we can assume that a;, = 0 if n; —n >0 and bj, =0 if mj +n > 0;
then anticommute wy, —to the left.

Solution: 1. Since (0[¢;47[0) = d;;0j<0, only a finite number of terms contribute to
{0lvn, w10 -

0 if m; > 0,
(Ol [0) = { ~my—

> Gini—nbjnOn;—nm;+n otherwise.
n=0

2. First, if i € Zzo + 4, (0]¢; = 0 and ¢7|0) = 0. Therefore, only the ;s and Yis with
negative indices will contribute to the vacuum expectation value, so that we can assume
that a;, = 0if n; —n >0 and b;,, = 0 if m; +n > 0.

In those conditions, the following identity holds :

’Un'w’)rknj - <0‘Unzw’>rknj ’O> - w’;knjvnj' (2)

(3

Now, let us prove Wick’s theorem. For k& = 1, the identity is obviously true. Let us sup-
pose that the identity holds up to order k — 1. We apply (2) successively to Uny, Win s
Ung_yWyn,s -+ Ung Wy, in order to place wy, on the left of the vacuum expectation value
(where we have (0|wy, = 0). We get :

(Olvp, - - .vnkwfnk cowp, |0) = <O|vnkw;';1k|O><O|vn1 .. '/Unk—lw:’(nk,1 o wy, [0)
— (0]vny -+ Uy Wiy Vng W+ Wy |0)

k—1
= Z(—l)](0|vnk7jw:1k\0><0|vn1 . 1@ e U Wy Wy [0)
=0

By induction hypothesis :

(Ovny « o Oy -+ - Ung Wiy -y, [0) = ‘Eget” (O]vn,wyy,, [0).
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In the end, we recognise the expansion of the determinant with respect to a line, and we
obtain Wick’s theorem.

Exercise 2. We have defined o, def >t j_py: and A(t) = def ST thau,.
]€Z+% nz1

1. Show that, for all k € Z+ 3 and n € Zsg :
[ana ¢k] = Yg_n, [an, I/JZJ = _¢I:+n'
2. Recall that the complete symmetric functions h,(t) are characterised by the equality
o2zt b = Z hp(t)z™ in C[t][[2]]. Show that for n >0 :

"1
:25 Z ta, - -ta,, -

di,...,dm>1
di++dm=n
3. Using Hadamard identity
* — 1 *
A= At) = ;ﬁ [A(t), [A(t), .. [At), 4] .. ]]
. n commutations
and the previous questions, deduce :
Qo™ =3 " ha(O) e, M Ofe O =3 T ha (), (3)
n=0 n=0

Solution: 1. For n > 0, : ¢;_ntt: = 1hj_n}. We use {gf} = 6;j fori,j € Z+ 3 :
s ) = D0 (Vjntiton — vy nt]) = D (Okthion —j k] — Yrtty i) )
j€Z+% j€Z+% cancel out

= Vk—n-
Similarly for ;.

2. We need to identify the coefficient of 2™ in order to get h,

m
R YOS IS i S AR

m=0 " m=0""dy . dm>1
LA |
S(Za Tt )t - T
n>0 = Cody,endm>1 n=0

3. We show the result for v, the computations transpose easily to ;.. From question 1, we
have [A(t),Yx] = X tntg—n. Therefore :
n=1

Ao AO = 57 age), [A(s), - [A®), 6] -]
m>0 """
m commutations

1
o td1 o b Vk—dy— - —dm

=%

dl7 7d

— 1 5 \
kL ol tdl---tdm)wk—m
n=0 =0 m: di,.. ,dle
di+-+dm=n

=hn(t) (question 2)
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Exercise 3. Schur polynomials and the boson-fermion correspondence.
The isomorphism between the fermionic and the bosonic Fock spaces is :

d: F — Bz, 27

|v) »—>Z (0)eA®) |v).
LeZ

The goal of the exercise is to show that, for a partition A, ®(]0, A))(t) = sx(t), where the s, are
the Schur polynomials.
Let A = (A1, A2,...,Agn)) be a partition and denote by d the number of diagonal boxes. We
recall the Frobenius notation for the partition A = (a1, ..., aq4|51,. .., B4), where

e «; is the number of boxes in the i column strictly under the diagonal ;

e (3; is the number of boxes in the 4 line striclty on the right of the diagonal.

1. Show that

0,0) = (=1 H gy g gt T ),

—ad—f —a1—3

2. Use Wick’s theorem (1) and the conjugation formulas (3) to show that :

B0M)(E) = (CD et S iy (O e(—0)
bi=1,d =0

3. Pieri’s rule allows to express the the Schur polynomial of a hook diagram (a partition of the
form (8 +1,1%), or («B) in the Frobenius notation), while Giambelli’s formula expresses
the Schur polynomial of a partition in terms of Schur polynomials of hook diagrams :

(a\ﬁ Zh,8+z+1 _¢o(—t) (Pieri’s rule),

S(al...ad|ﬁl...ﬁd)( ): Zjdet S(ai|g;)(t)  (Glambelli).

Use those identities to show that (|0, \))(t) = sx(t).

Solution: 1. Let A = (aq,...,aq4|B1, ..., fa4). We want to produce such a state by applying
fermionic operators on the vacuum :
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We begin with the left part of the partition by acting with ¢7 on |0) in order to remove
black stones from the Maya diagram. We first need to remove the black stone at position
—aq — %, by applying (—1)°‘1wia1_l. This will produce the state :

2

Doing the same for the stones at positions —ag — %, e, =g — %, we get the state
_1\a1ttag,* * .
(~DmE eyt gt 0)

Then, we add black stones on the right part of the Maya diagram by applying successively
Vg, pdse-s¥p 41 (there is no sign issue here), in order to get the desired Maya diagram.
2 2

2. From question 1, we have :

B(0, 1) () = (~)M T HOlAOy, 4y g T ]0)

—ag—3 —o1—3
— (_1)a1+--.+ad <0‘eA(t)wﬁl+%efA(t) o eA(t)wﬂdJr%efA(t)eA(t)wiad_%efA(t)
o €A(t)¢* ) e At) A(t) ’0>

—011—5

(we restrict to (0| since zero charge states are sent to 2% polynomials under ®).

For i € {1,...,d}, we define Vgt 1y wiai_%

vﬁz+% = eA(t)¢ﬁi+%e_A(t)7 wiai_% — eA(t)¢* e—A(t)'

Therefore we can recast the polynomial to compute as :

(0, V) (t) = (=)™ HOfg 1 v, aw”, aw” o e00)

—ag—3 —o1—=

Page 4




We now apply Wick’s theorem (1) (we justify that vs and ws have the same shape as in
Exercise 1 in a minute) :

B0, M) () = (=17 det (Ol

 det 110

From the conjugation relations (3), we get

1 = Z hk T,ZJB +——k7 th _a _*+£’

k>0 >0

(this justifies that the vs and ws have the same shape as in Exercise 1). Therefore

(0, 0)(8) = (~1)* T det > h(6)he(=6) (Ol 4 35874, 14,10)-
K peeesd k>0

We have 1!1;k|0> = 0 if j > 0, so we can restrict the sum over ¢ between 0 and «. Using
(0]1i7|0) = 0;;j<0 and the multilinearity of the determinant, we can recast the last
expression into :

(10, \))(t) = Zhﬂ]—l-é—l—l —o(—t).

,Jl

3. By straightforward application of Pieri’s rule and Giambelli’s formula :

«

©(]0,A))(t) = et Zhﬂﬁ-é-i-l —o(=t)
Pieri Giambelli
= jdet S(ai\ﬁj)(t) = S)\(t).

Exercise 4. Vertex operators
Reminder : we defined the vertex operators in F as

Y g Y g

JEL+3 JEZ+3

We stated that, under the boson-fermion correspondence, the images of ¥(u), ¥*(u) in B[z, 271
is - _
W () & eftu) g=€@u) , =01 U™ (u) & o€t €@ =1, =01

I 9

def def _ _
where £(t,u) = kzltkuk 0= (871, %%,%% ), and u=¢ : 2'f(t) — uf2 f(t). The goal
>
of this exercise is to prove the previous statement for W(u).

Wick’s theorem for the vertex operators

1 1

Eotp) - ) (@) 7@l = det T

I (F-Ha-a) @

B 1 1<i<j<n
- 4+1 . [ 1
P1---pn) a1 .- - qn) 1<H (137 _ q])
<i,J<n
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1. Show that

Oy (u)e 4O = K0y (u), (5)

@ o Ty (p)edi T = (1 Jui(p),
(6)

_Zk/ %ak * Zk/ %ak — 1 *
e SRzl KR (g)eiut e (q).
Use (5) to show that :
(1 (u)|0)) (8) = ) 3 LU () Io).
LeZ
2. Prove the following :
uk
1\ v = oSt Lul(p — 1)e 2w TOkA®) )
(w)@(Jv))(t)

LEZ

TLk
It suffices then to show : (€| (u)|w) = u=¢(¢ — 1|e” 2k E Y w) V€ Z, |w) € F.
3. Suppose that |w) = ¥(p2) ... Y(pn)Y*(qn) - .- ¥*(q1)|€). Use (6) to show that :
S e 1:[ (i B l)
Ho—1]e” Lokt F O |y) = T
I1 (% - qy)pl_

j=1
4. Use Wick’s formula (4) to prove that for all £ € Z :
(Llp(u)(pa) - - P (pn)P" (gn) - - " (@)|6) =

(i -7)
w TR Res pi (E(pa) - ()Y (@) -0 (1) O)dpi
II(%—-%)Mf

7=1
Conclude.

Solution: 1. The computations are similar to the second question of exercise 2. For (5), we
get :

eA(t)zp(u)e*A(t): Z u*k*%eA(t)wke*At

k€Z+3%

= > > u 53 (6) g

keZ+3 1 neZsg

_ Z hn(t)u*” Z Uiki%”l/}k — eﬁ(tu—l)w(u)'

n=0 keZ+3
For (6), let us do the computation for ¥ (p) :
— ﬁ ﬁ .1 1 _udl _ud
e D % ak¢(p)eZk>1 Ok _ Z piT2 Z — T —Yi—dy——d,,
Z'EZ—Q-% meZxo Cdi,edm>1 1 m
2 3
—u® —u
S Y h(—w g g i
i€Z+3 n€Zxo
1uk
ISP MR ¥ S NI I, e
o~ N

S Res pi T (U (p1) - ()1 (@) - - " () |O)dpr.



Now :
O((u)v))(t) = 2 (€l (u)|v) ® 3 2 (et Dy (w)eA o).
LET leZ

2. From the formula of ¥ (u) :

- - uk o
U(u)®(|v))(t) —eftu) ZZ€+IU—Z—1<€|8 PIFEE - ity ezn%t"an‘w
LEL

uk
=St S Sty e Lzt E R AW®) )
tez

where the second equality comes from %ezfel tnon an and the fact that the a,s com-

mute with eachother for n > 1.
k

3. We use the conjugation relations (6) to commute e 2ok T

on the right :

1 (- 7)

(-1 e T ) = 0t =2 0 () . (pa) e (an) - (1) € wm T
[T (1 — ug;) —[0)

=1

We then transform the products to get the correct shape, notice also that (¢ —1| = (¢|),_1,
2
So we get :

ﬁ (; _ 1
uk A u Pi
w (e —1le” L1 ) = u_/“/_“lzf . {lltbg_19(p2) - b (Pa)¥ (qn) - - P (q1)[€)-
v
j=1

Last, we remark that ,_ 1 is the coefficient of pfz in ¥ (p1), so we have

¥,_1 = Res pi™ (p1)dp
2 p170
and this yields the result.
4. This is a straight application of (4). We then obtain for all ell € Z, |w) € F :

k

(i (u)|w) = w0 — 1fe™ 2rz1 T o)

and this proves that ®(¢(u)) = ¥(u).
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