Session 2

Exercise 1. Bipartite maps, cut and join and KP hierarchy

The goal of the exercise is to prove that the partition function of bipartite maps - also alled Grothendieck dessins d'enfant - is a tau-function of the KP hierarchy, following a paper by Kazarian and Zograf (arXiv :1406.5976). We begin with some definitions.

Definition 1. A map is a graph G where each vertex is endowed with a cyclic ordering of the incident half-edges.

For instance, the following graphs are the same, but they define two different maps. The notion of face is well-defined for a map. On the left hand side the map has one face ; on the right hand side, the map has 3 faces (we count the external face as well) :

We are interested in bipartite maps :
Definition 2. A bipartite map is a map with two kinds of vertices (we forbid isolated vertices) : black vertices - and white vertices o, such that each edge is adjacent to one black vertex and one white vertex.

We can orient the edges of a bipartite map from white vertices to black vertices, and say that an edge is adjacent to a face if the latter stands on the left of the edge with the given orientation. The degree of a face of a bipartite map is the number of edges adjacent to the face. It is also the number of white (resp. black) corners around the face.

We denote by $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$ the set of (non-necessarily connected) bipartite maps \mathbf{m} with n edges, N_{\bullet} (resp. N_{\circ}) black (resp. white) vertices, and f_{i} faces of degree i, and we enumerate those maps :

$$
\mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) \stackrel{\text { def }}{=} \sum_{\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)} \frac{1}{\# \operatorname{Aut}(\mathbf{m})}
$$

For instance, the bipartite map given above contributes to $\mathcal{N}(19,6,7,(1,2,1,0,1,1,0,0, \ldots))$ and has weight $u^{19} v_{\circ}^{7} v_{\bullet}^{6} p_{1} p_{2}^{2} p_{3} p_{5} p_{6}$.
By convention, $\mathcal{N}(0,0,0, \mathbf{0})=1$ (it counts the empty map). We build the partition function

$$
\begin{equation*}
\tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right) \stackrel{\text { def }}{=} \sum_{n, N_{\bullet}, N_{\circ}, \mathbf{f}} \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} \prod_{i} p_{i}^{f_{i}} \tag{1}
\end{equation*}
$$

The idea of the exercise is to find an equation satisfied by τ by removing an edge from a bipartite map.

1. Consider the following procedure : for any $n \geqslant 0$ and for any bipartite map with $n+1$ edges, choose one of the edge and consider that its weight is 1 (instead of u). Justify that enumerating the number of ways of doing so amounts to compute $\frac{\partial \tau}{\partial u}\left(u, v_{\bullet}, v_{0}, \mathbf{p}\right)$.
2. We now look at the same procedure as in question 1 , but in reverse direction : add a distinguished edge (of weight 1) to bipartites maps. There are several ways of doing so, and to see that, start with a bipartite map with n edges.
(a) First case. We want to add the distinguished edge (in blue) inside a face of degree $i+j-1$ in order to create two faces of degrees i and j, so that the degree i face stands on the left of the new edge :

Let $\mathbf{m} \in \mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$; in how many ways can we add such an edge? In the remaining of this question, we note γ this number. there are $(i+j-1) f_{i+j-1}$ ways of adding such an edge.
Deduce that, when running over the set $\mathfrak{B}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right)$, the weighted number of maps with distinguished edge that we obtain is :

$$
\gamma \mathcal{N}\left(n, N_{\bullet}, N_{\circ}, \mathbf{f}\right) u^{n} v_{\bullet}^{N_{\bullet}} v_{\circ}^{N_{\circ}} p_{i}^{f_{i}+1} p_{j}^{f_{j}+1} p_{i+j-1}^{f_{i+j-1}-1} \prod_{\ell \neq i, j, i+j-1} p_{\ell}^{f_{\ell}}
$$

Show that, summing over $n, N_{\bullet}, N_{\circ}, \mathbf{f}$ and i, j, we get:

$$
\sum_{i, j \geqslant 1}(i+j-1) p_{i} p_{j} \frac{\partial}{\partial p_{i+j-1}} \tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right)
$$

(b) Second case. We want to add the distinguished edge on a white vertex of a degree i face and a black vertex of a degree j face, to obtain a face of degree $i+j+1$:

Following the same kind of steps as in question 2.(a), show that enumerating this kind of edge adjunction amounts to compute

$$
\sum_{i, j \geqslant 1} i j p_{i+j+1} \frac{\partial}{\partial p_{i}} \frac{\partial}{\partial p_{j}} \tau\left(u, v_{\bullet}, v_{\circ}, \mathbf{p}\right)
$$

(c) Third case. The new edge is added to a white (resp. black) vertex of a face of degree i by creating also a new black (resp. white) vertex. The new face has degree $i+1$.

Find the operator to be applied to τ in this case.
(d) Fourth case. A new disconnected edge is added to the existing map. Find the operator to be applied to τ in this case.
3. Gathering questions 1 and 2, we obtain the Cut-and-join equation :

$$
\frac{\partial \tau}{\partial u}=A \cdot \tau
$$

where A is a sum of 4 explicit operators acting on τ. Give A.
4. Changing variables $t_{j} \stackrel{\text { def }}{=} \frac{p_{j}}{j}$, and using the boson-fermion correspondence, show that :

$$
\tau=\langle 0| \mathrm{e}^{A(t)} \mathrm{e}^{u\left(v_{\mathrm{o}} v_{\bullet} \alpha_{-1}+\left(v_{\mathrm{o}}+v_{\bullet}\right) \Lambda_{-1}+M_{-1}\right)}|0\rangle
$$

5. Deduce that τ is a solution of the KP hierarchy.

Actually, we just proved that strictly monotone Hurwitz numbers satisfy the KP hierarchy!

Exercise 2. From Hirota to KP equation

Reminder : the Hirota equation for KP hierarchy can take this form

$$
\begin{equation*}
\underset{w=\infty}{\operatorname{Res} \mathrm{e}^{\sum_{j=1}^{\infty} w^{j}\left(t_{j}-s_{j}\right)} \tau\left(\mathbf{t}-\left[w^{-1}\right]\right) \tau\left(\mathbf{s}+\left[w^{-1}\right]\right)=0, ~} \tag{2}
\end{equation*}
$$

where $\left[w^{-1}\right]=\left(w^{-1}, \frac{w^{-2}}{2}, \frac{w^{-3}}{3}, \ldots\right)$.

1. Consider two functions f, g of infinitely many variables. Introduce the Hirota derivative as the following operator :

$$
\left.D_{k}(f \cdot g) \stackrel{\text { def }}{=} \frac{\partial}{\partial q_{k}} f\left(p_{1}, \ldots, p_{k-1}, p_{k}+q_{k}, p_{k+1, \ldots}\right) g\left(p_{1}, \ldots, p_{k-1}, p_{k}-q_{k}, p_{k+1, \ldots}\right)\right|_{q_{k}=0}
$$

By making the change of variables $t_{i}=p_{i}-q_{i}, s_{i}=p_{i}+q_{i}$, show that Hirota equation can be put in this form :

$$
\operatorname{Res}_{w=\infty}\left(\mathrm{e}^{-2 \sum_{j=1}^{\infty} q_{j} w^{j}} \mathrm{e}^{-\sum_{j=1}^{\infty}\left(q_{j}+\frac{1}{j w^{j}}\right) D_{j}}\right) \tau \cdot \tau=0 .
$$

2. Show that applying Hirota derivatives an odd number of times on $\tau \cdot \tau$ yields 0 .
3. Consider that $q_{k}=q \delta_{k, 1}$. We can view (2) as an infinite set of equations, one for each power of q.
Prove that the coefficient of q^{3} gives the following equation :

$$
\begin{equation*}
\left(D_{1}^{4}+3 D_{2}^{2}-4 D_{1} D_{3}\right) \tau \cdot \tau=0 . \tag{3}
\end{equation*}
$$

4. Writing $\tau=\mathrm{e}^{F}$, rewrite (3) as an equation satisfied by F (the KP equation).
