MOND PHENOMENOLOGY AND ALTERNATIVE THEORIES

Luc Blanchet

Gravitation et Cosmologie ($\mathcal{GR} \in \mathbb{CO}$) Institut d'Astrophysique de Paris

3 juin 2010

Based on

- L. Blanchet, Classical Quantum Gravity 24, 3529 (2007); and 24, 3529 3541 (2007).
- L. Blanchet & A. Le Tiec, Physical Review D 78, 024031 (2008); and 80, 023524 (2009).

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Mass-energy content of the Universe

The total mass-energy of the Universe is made of

- **(**) $\Omega_{de} = 73\%$ of dark energy, maybe in the form of a cosmological constant Λ , as measured from the Hubble diagram of supernovas
- 2 $\Omega_{dm} = 23\%$ of non-baryonic dark matter, a perfect fluid without pressure whose nature is unknown
- (3) $\Omega_b=4\%$ of baryonic matter, measured by the Big Bang nucleosynthesis and from CMB fluctuations

The concordance model $\Lambda\text{-}\mathsf{CDM}$

This model brilliantly accounts for

- It the mass discrepancy between the dynamical and luminous masses of clusters of galaxies
- 2 the precise measurements of the anisotropies of the cosmic microwave background (CMB)
- ③ the formation and growth of large scale structures as seen in deep redshift and weak lensing surveys
- 4 the fainting of the light curves of distant supernovae

DM appears to be made by non-relativistic (cold) particles at large scales

Candidates include [Bertone, Hooper & Silk, 2004]

- the neutralino predicted by super-symmetric extensions of the standard model
- the axion introduced in an attempt to solve the problem of CP violation
- Kaluza-Klein states predicted by models with extra dimensions

...

Cosmic N-body simulations

Thanks to high precision $N\text{-}{\rm body}$ simulations in cosmology the model $\Lambda\text{-}{\rm CDM}$ can be extrapolated and tested at the smaller scale of galaxies

Problems of CDM with galactic halos

The CDM paradigm faces severe challenges when compared to observations at galactic scales [McGaugh & Sanders 2004; Famaey 2007]

- Prediction of numerous but unseen satellites of large galaxies
- ② Generic formation of cusps of DM in central regions of galaxies while the rotation curves seem to favor a constant density profile in the core
- ③ Evidence that tidal dwarf galaxies are dominated by DM contrary to CDM predictions [Bournaud et al. 2007; Gentile et al. 2007]
- ⁽⁴⁾ Failure to explain in a natural way Milgrom's law, that DM arises only in regions where gravity falls below some universal acceleration scale a_0
- In Difficulty at explaining in a natural way the flat rotation curves of galaxies and the Tully-Fisher relation

Rotation curves of galaxies are flat

The fact that v(r) is approximately constant implies that beyond the optical disk

$$M_{\rm halo}(r) \approx r \qquad \rho_{\rm halo}(r) \approx rac{1}{r^2}$$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 6 / 29

The Tully-Fisher empirical relation [Tully & Fisher 1977]

The relation between the asymptotic flat velocity and the luminosity of spirals is

 $v_{\rm flat} \propto L^{1/4}$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Modified Newtonian dynamics [Milgrom 1983]

MOND states that there is no dark matter and we witness a violation of the fundamental law of gravity in the regime of weak gravity

The Newtonian gravitational field is modified in an ad hoc way

$$\mu\left(\frac{\boldsymbol{g}}{a_0}\right)\boldsymbol{g} = \boldsymbol{g}_{\text{Newton}}$$

In the MOND regime we have $\mu = g/a_0 + \mathcal{O}(g^2)$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 8 / 29

イロト イポト イヨト イヨ

Recovering flat rotation curves and the Tully-Fisher law

- 1) For a spherical mass $g_N = \frac{GM}{r^2}$ hence $g \approx \frac{\sqrt{GM a_0}}{r}$
- ⁽²⁾ For circular motion $\frac{v^2}{r} = g$ thus v is constant and we get

 $v_{\rm flat} \approx \left(G \, M \, a_0\right)^{1/4}$

- 3 Assuming L/M = const one naturally explains the Tully-Fisher relation
- ④ The numerical value of the critical acceleration is measured as

 $a_0 \approx 1.2 \, 10^{-10} \, \mathrm{m/s^2}$

This value of a_0 is very close to the acceleration scale associated with the cosmological constant Λ

$$a_0 \approx 1.3 a_\Lambda$$
 where $a_\Lambda \equiv \frac{1}{2\pi} \left(\frac{\Lambda}{3}\right)^{1/2}$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 9 / 29

イロト イポト イヨト イヨト

Many galaxies are accurately fitted with MOND [Sanders 1996, McGaugh & de Blok 1998]

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

□ ▶ < @ ▶ < 볼 ▶ < 볼 ▶ 글 ∽ < <

Conférence LPNHE 10 / 29

Fit of the mass-to-luminosity ratio

The fit of rotation curves is actually a one-parameter fit. The mass-to-luminosity ratio M/L of each galaxy is adjusted (and is therefore measured by MOND)

M/L shows the same trend with colour as is implied by models of population synthesis [Sanders & Verheijen 1998]

Conférence LPNHE 11 / 29

The mass discrepancy is $\approx 4-5$ with Newton and ≈ 2 with MOND

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 三 夕 Q (~ Conférence LPNHE 12 / 29

Collision of two clusters of galaxies [Clowe et al 2006]

The bullet cluster and more generally X-ray emitting galaxy clusters can be fitted with MOND and a component of baryonic dark matter and hot/warm neutrinos [Angus, Famaey & Buote 2008]

Faced with the "unreasonable effectiveness" of MOND, three solutions are possible

- Standard: MOND could be explained within the CDM paradigm
- Modified Gravity: There is a fundamental modification of the law of gravity in a regime of weak gravity (this is the traditional approach of MOND and its relativistic extensions like TeVeS)
- Modified Matter: The law of gravity is not modified but DM is endowed with special properties which make it able to explain the phenomenology of MOND

We consider that the Standard scenario (CDM) is excluded by observations

- To solve the problems of CDM in galactic halos one must invoke complicated astrophysical processes which have to be fine tuned for each galaxies
- ⁽²⁾ No convincing mechanism has been found to incorporate in a natural way the universal acceleration scale a_0 in the simulated CDM halos

Only the Modified Gravity and Modified Matter approaches remain

In these two approaches we shall have to explain why DM seems to be made of particles at cosmological scales

• The MOND equation can be rewritten as the modified Poisson equation

$$\boldsymbol{\nabla} \cdot \left[\underbrace{\boldsymbol{\mu} \left(\frac{g}{a_0} \right)}_{\text{MOND function}} \boldsymbol{g} \right] = -4\pi \, G \, \rho_{\mathsf{b}}$$

where ${\boldsymbol g} = {\boldsymbol \nabla} U$ is the gravitational field and ρ_{b} the density of ordinary matter

This equation is derivable from the Lagrangian [Bekenstein & Milgrom 1984]

$$L = \frac{a_0^2}{8\pi} f\left(\frac{\boldsymbol{\nabla} U^2}{a_0^2}\right) + \rho U$$

where f is related to the MOND function by $f'(x) = \mu(\sqrt{x})$.

Conférence LPNHE

イロト イポト イヨト イヨト

16 / 29

Scalar-tensor theory [Bekenstein & Sanders 1994]

In tensor part is the usual Einstein-Hilbert action

$$L_g = \frac{1}{16\pi} R[g, \partial g, \partial^2 g]$$

2 The scalar field is given by an aquadratic kinetic term

$$L_{\phi} = \frac{a_0^2}{8\pi} F\left(\frac{g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi}{a_0^2}\right)$$

③ The matter fields are universally coupled to gravity

$$L_{\rm m} = L_{\rm m} \left[\Psi, \underbrace{\tilde{g}_{\mu\nu} \equiv e^{2\phi} g_{\mu\nu}}_{\text{physical metric}} \right]$$

- Light signals do not feel the presence of the scalar field ϕ because the physical metric $\tilde{g}_{\mu\nu}$ is conformally related to the Einstein frame metric $g_{\mu\nu}$
- Since we observe huge amounts of dark matter by gravitational lensing (weak and strong) this theory is not viable

(1) The tensor part is the Einstein-Hilbert action L_g

② The vector field part for $W_{\mu
ho}=\partial_{\mu}V_{
u}-\partial_{
u}V_{\mu}$ is

$$L_{\rm V} = -\frac{1}{32\pi} \left[K \underbrace{g^{\mu\nu}g^{\rho\sigma}W_{\mu\rho}W_{\nu\sigma}}_{\text{standard spin-1 action}} -2\lambda \underbrace{\left(g^{\mu\nu}V_{\mu}V_{\nu}+1\right)}_{\text{tells that } V^{\mu}\text{ is time-like and unitary}} \right]$$

$$\text{3 The scalar action reads} L_{\phi} = -\frac{1}{2} \left(g^{\mu\nu} - V^{\mu}V^{\nu}\right) \partial_{\mu}\phi \partial_{\nu}\phi - \frac{\sigma^{4}}{4\ell^{2}}F\left(k\sigma^{2}\right)$$

Matter fields are coupled to the non-conformally related physical metric

$$\tilde{g}_{\mu\nu} = e^{-2\phi} (g_{\mu\nu} + V_{\mu}V_{\nu}) - e^{2\phi}V_{\mu}V_{\nu}$$

This theory has evolved recently toward Einstein-æther like theories [Jacobson & Mattingly 2001; Zlosnik, Ferreira & Starkman 2007; Halle, Zhao & Li 2008]

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 18 / 29

= nar

イロト イポト イヨト イヨト

- (1) Keep the standard law of gravity namely general relativity
- ② Use the phenomenology of MOND to guess what could be the nature of DM

This approach is based on a striking analogy between

- MOND which takes the form of a modified Poisson equation
- The electrostatics of dielectric media described by a modified Gauss equation

イロト イポト イヨト イヨト

Electrostatics of dielectric media

In the presence of a polarization field the Gauss equation can be written as

$$abla \cdot E = rac{
ho_e +
ho_e^{
m polar}}{arepsilon_0} \qquad \Longleftrightarrow \qquad
abla \cdot \left[(1 + \chi_e) E
ight] = rac{
ho_e}{arepsilon_0}$$

The density of polarization charges is

$$ho_e^{
m polar} = - oldsymbol
abla \cdot oldsymbol \Pi_e$$

and the polarization vector Π_e is aligned with the electric field

$$\mathbf{\Pi}_e = \varepsilon_0 \, \chi_e \, \boldsymbol{E}$$

where χ_e denotes the coefficient of electric susceptibility, $\langle \mathcal{B} \rangle \langle \mathcal{B} \rangle$

Interpretation of MOND [Blanchet 2006]

The MOND equation in the form of a modified Poisson equation

$$\boldsymbol{\nabla} \cdot \left[\underbrace{\boldsymbol{\mu} \left(\frac{g}{a_0} \right)}_{\text{MOND function}} \boldsymbol{g} \right] = -4\pi \, G \, \rho_{\text{b}}$$

is formally analogous to the equation of electrostatics inside a dielectric. We pose

The MOND equation is equivalent to

$$\Delta U = -4\pi G \left(\rho_{\mathsf{b}} + \rho_{\mathsf{polar}}\right)$$

In this interpretation the Newtonian law of gravity is not violated but we are postulating a new form of DM consisting of polarization masses with density

$$\rho_{\rm polar} = -\boldsymbol{\nabla} \cdot \boldsymbol{\Pi}$$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 21 / 29

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The matter action in standard GR is of the type

$$S = \int d^4x \sqrt{-g} L\left[J^{\mu}, \xi^{\mu}, \dot{\xi}^{\mu}, g_{\mu\nu}\right]$$

where the current density J^{μ} and the dipole moment ξ^{μ} are two independent dynamical variables

 ${\, \bullet \, }$ The current density $J^{\mu}=\sigma u^{\mu}$ is conserved

 $\nabla_{\mu}J^{\mu} = 0$

• The covariant time derivative is denoted

$$\dot{\xi}^{\mu} \equiv \frac{\mathrm{D}\xi^{\mu}}{\mathrm{d}\tau} = u^{\nu} \nabla_{\nu} \xi^{\mu}$$

We propose three terms

$$L = -\sigma + J^{\mu} \dot{\xi}_{\mu} - \mathcal{W}(\Pi_{\perp})$$

- (1) A mass term σ in an ordinary sense (like for ordinary CDM)
- 2 An interaction term between the fluid's mass current $J^{\mu} = \sigma u^{\mu}$ and the dipole moment
- (a) A potential term W describing an internal force and depending on the norm of the polarization $\Pi_{\perp} = \sigma \xi_{\perp}$

One easily proves that the only dynamical degrees of freedom of the dipole moment are the space-like projection orthogonal to the velocity

$$\xi^{\mu}_{\perp} = \perp^{\mu}_{\nu} \xi^{\nu}$$
 where the projector is $\perp^{\mu}_{\nu} = \delta^{\mu}_{\nu} + u^{\mu} u_{\nu}$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q (~ Conférence LPNHE 23 / 29 Variation with respect to $g_{\mu\nu}$

 $T^{\mu\nu} = \Omega^{(\mu}J^{\nu)} \iff \text{monopolar DM}$ $-\nabla_{\rho} \left(\left[\Pi^{\rho}_{\perp} u^{(\mu} - u^{\rho}\Pi^{(\mu}_{\perp} \right] u^{\nu)} \right) \iff \text{dipolar DM}$ $-g^{\mu\nu} \left(\mathcal{W} - \Pi_{\perp} \mathcal{W}' \right) \iff \text{DE}$

The DM mass density is made of a monopolar term σ plus a dipolar term $-\nabla_{\mu}\Pi^{\mu}_{\perp}$ which appears as the relativistic analogue of the polarization mass density

$$u_{\mu}u_{\nu}T^{\mu\nu} = \underbrace{\sigma - \nabla_{\mu}\Pi_{\perp}^{\mu}}_{\text{DM energy density}} + \underbrace{\mathcal{W} - \Pi_{\perp}\mathcal{W}'}_{\text{DE}}$$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

Conférence LPNHE 24 / 29

E SQC

イロト イポト イヨト イヨト

The internal potential

The potential \mathcal{W} is phenomenologically determined through third order

$$\mathcal{W} = \frac{\Lambda}{8\pi} + 2\pi \,\Pi_{\perp}^2 + \frac{16\pi^2}{3a_0} \,\Pi_{\perp}^3 + \mathcal{O}\left(\Pi_{\perp}^4\right)$$

- The minimum of that potential is the cosmological constant Λ and the third-order deviation from the minimum contains the MOND scale a_0
- In this unification scheme the natural order of magnitude of the cosmological constant should be comparable with a_0

```
Luc Blanchet (\mathcal{GR} \in \mathbb{CO})
```

Conférence LPNHE 25 / 29

イロト イボト イヨト イヨ

Consider a linear perturbation of the FLRW background. Since the dipole moment is space-like, it will break the spatial isotropy of the background, and must belong to the first-order perturbation

$$\xi_{\perp}^{\mu} = \mathcal{O}(1)$$

The stress-energy tensor reads $T^{\mu\nu}=T^{\mu\nu}_{\rm de}+T^{\mu\nu}_{\rm dm}$ where

- 1) the DE is given by the cosmological constant Λ
- ② the DM takes the form of a perfect fluid with zero pressure

$$T_{\rm dm}^{\mu\nu} = \rho \, \tilde{u}^{\mu} \tilde{u}^{\nu} + \mathcal{O}(2)$$

Here \tilde{u}^{μ} denotes an effective four-velocity field and $\rho \equiv \sigma - \nabla_{\mu} \Pi^{\mu}_{\perp}$ is the energy density of the DM fluid

Conférence LPNHE 26 / 29

イロト イポト イヨト イヨト

Agreement with the $\Lambda\text{-}\mathsf{CDM}$ scenario

The dipolar fluid is undistinguishable from

- standard DE (a cosmological constant)
- standard CDM (a pressureless perfect fluid)

at the level of first-order cosmological perturbations

Adjusting A so that $\Omega_{de} \simeq 0.73$ and $\overline{\sigma}$ so that $\Omega_{dm} \simeq 0.23$ the model is consistent with CMB fluctuations

The Lagrangian becomes in the non-relativistic limit $c \to +\infty$

$$\mathcal{L}_{\mathsf{NR}} = \sigma \left(\frac{\boldsymbol{v}^2}{2} + U + \boldsymbol{g} \cdot \boldsymbol{\xi}_{\perp} + \boldsymbol{v} \cdot \frac{\mathrm{d}\boldsymbol{\xi}_{\perp}}{\mathrm{d}t} \right) - \mathcal{W}(\Pi_{\perp})$$

where we recognize the gravitational analogue $g \cdot \Pi_{\perp}$ of the coupling of the polarization field to an exterior field

In the equation of motion and gravitational equation read

$$\frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = \boldsymbol{g} - \boldsymbol{\mathcal{F}}$$
$$\boldsymbol{\nabla} \cdot (\boldsymbol{g} - 4\pi \, \boldsymbol{\Pi}_{\perp}) = -4\pi \left(\rho_{\mathsf{b}} + \boldsymbol{\sigma}\right)$$

② MOND is recovered using an hypothesis of weak clustering of dipolar DM, which means $v \approx 0$ and $\sigma \ll \rho_b$

Luc Blanchet $(\mathcal{GR} \in \mathbb{CO})$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

This model

- explains the phenomenology of MOND by the physical process of gravitational polarization
- (2) recovers the successful standard cosmological model $\Lambda\text{-}\mathsf{CDM}$ at linear perturbation order
- In the second second

イロト イポト イヨト イヨト

Conférence LPNHE

29 / 29

The model should be further tested in cosmology by

- Investigating second-order cosmological perturbations
- ② testing the intermediate scale of galaxy clusters