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• Gravitation theory: beyond General Relativity; scale dependence; metric
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light deflection.
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Gravitation theory
Geometry and fields

According to General Relativity (GR), gravitation is described by the
geometry of a Riemannian space-time

ds ≡ gµνdxµdxν

• the geometrical distance is measured as the proper time delivered by
ideal clocks along their trajectories: τ ≡

∫
ds

• freely falling probes (masses and light) follow geodesics: δ(
∫
ds) = 

Coupling to a same metric field leads to the universality of free fall:
The equivalence principle is the best tested property of nature.

As a fundamental interaction, gravitation is carried by fields:
curvature couples to the energy-momentum tensor of gravity sources

• one curvature tensor Eµν has a null divergence (Bianchi identities) like
the energy-momentum tensor Tµν (conservation laws)

Eµν ≡ Rµν −



gµνR, ∇νEµν = , ∇νTµν = 

• in GR, the two tensors are simply proportional to each other

Eµν =
πGN
c

Tµν Einstein− Hilbert equations
Newton gravitation constant GN is the less well known fundamental constant.



Beyond GR
Gravitation is one of the four fundamental interactions.
The electromagnetic, weak and strong interactions share a same property:
radiative corrections entail scale dependent couplings.
Fluctuations of metric fields and stress tensors modify the graviton
propagator i.e. the effective coupling between metric fields and sources

GN GN

GN

GN

Tµν Tλρ
hµν hλρ

Radiative corrections introduce a coupling to squares of curvatures:

• GR is embedded in renormalizable theories.
• GN becomes scale dependent (a running coupling constant).
• gravitation involves additional couplings.

GR extends to a theory which preserves its geometric basis:

• gravitation is described by a metric theory.
• it may remain close to GR within a large range of scales.
• the corrections to GR introduce two gravitational sectors.



Metric extensions of GR
The general gravitation equations may be written as response equations

Eµν = χµν(T ) =
πGN
c

Tµν + δχµν(T )

M.-T. Jaekel, S. Reynaud, Ann. Physik (1995) 68
The graviton couples differently to massive and massless fields (trace and
traceless energy-momentum tensors): the effective couplings in the two
sectors of Weyl (traceless) and scalar (trace) curvatures differ.

In the linearized limit, the two sectors can be separated with (non local) linear
projectors. For a stationary pointlike source

Tµν = δµδνT, T = Mcδ(k)

Eµν = E()
µν + E()

µν , πµν ≡ ηµν −
kµkν
k

E()
µν = {πµπν −

πµνπ



} πG

()

c
T, E()

µν =
πµνπ





πG()

c
T

G() = GN + δG(), G() = GN + δG()

The two couplings are equivalent to two gravitation potentials replacing
Newton potential ΦN

g = + (ΦN + δΦN ), gij = −(− (ΦN + δΦN − δΦP ))δij



Parametrized vicinity of GR
In general, metric solutions appear as perturbations of Einstein curvature

Eµν ≡ [Eµν ]st + δEµν , δEµν ≡ δχµν(T )

In the vicinity of GR, the two gravitation running couplings are equivalent to
two independent components of Einstein curvature.
The two independent curvatures are equivalent to two gravitation potentials
δΦN and δΦP

δE ≡ u(δΦN − δΦP )′′, δErr ≡ uδΦ′P u ≡ 

r
, ()′ ≡ ∂u

In the static isotropic case, the two potentials describe anomalous parts of
the metric

δgrr =
u

(− κu)
(δΦN − δΦP )′, κ ≡ GNM

c
, ΦN = −κu

δg = δΦN + κ(− κu)

∫
u(δΦN − δΦP )′ − δΦN

(− κu)
du

The two potentials provide a gauge-independent parametrization of metric
theories in the vicinity of GR.

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 777



Experimental gravitation
Tests of the equivalence principle

• Eötvös type experiments
• Tests of the universality of free fall
• Earth-Moon distance measurements

Relative acceleration
between test bodies
of different compositions

η ≡ a − a
a + a

   

       
 

C.F. Will Living Reviews in Relativity, 9 (2006) 3
The equivalence principle
is presently tested at −

to be improved to − (Microscope)

   



Tests of Newton potential

The Newtonian dependence of the potential in the first sector
is well tested within a large range of scales.
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In the submillimeter range:
fifth force tests.

At planetary range:
best fits performed
with observations on
artificial probes
and planets (ephemerides).

J. Coy, E. Fischbach, R. Hellings, C. Talmadge, E.M. Standish (2003)

Significant deviations remain possible at very short and very long ranges



PPN metrics

Tests of GR are performed by comparing observations with predictions
obtained from a parametrized family of (PPN) metrics.

In the approximation of a pointlike gravitational source (and ignoring effects
due to rotation) PPN metrics may be written (in isotropic coordinates)

g = + ΦN + βΦN + . . . , ΦN = −GNM
cr

grr = −+ γΦN + . . .

Eddington parameters γ and β parametrize the effects of gravitation on light
propagation and on the trajectories of massive bodies.
PPN metrics are particular cases of metric extensions of GR

δΦN = (β − )ΦN +O(ΦN ), δΦP = −(γ − )ΦN +O(ΦN )

δE =


r
O(ΦN ), δErr =



r
((γ − )ΦN +O(ΦN )) [PPN]



Classical tests
Observations are compared with PPN predictions depending on (β, γ)

δΦN = (β − )ΦN , δΦP = −(γ − )ΦN

• Ranging on planets
• Astrometry and VLBI
• Lunar laser ranging
• Doppler velocimetry on probes
• Light deflection

Tests of β, γ are consistent with GR and bound allowed deviations

|γ − | < × −, |β − | < × −

Measurement of the two-way
relativistic frequency shift
due to the Sun gravitation
(Cassini)
B. Bertotti, L. Iess and P. Tortora,
Nature 425 (2003) 374

   



Tests in the outer solar system

   

   

After their planetary objectives were met,
the Pioneer 10/11 missions were extended
by NASA, providing the best
long-range test of gravity to date.
Anomalies have been observed
after Pioneer 10/11 last flybies.

The radio signals used for navigation
showed regular deviations from the
values predicted by GR.
J. Anderson et al.,
Phys. Rev. D 65 (2002) 082004

Doppler residuals exhibited a nearly linear dependence in time

vobs − vmodel ' −aP (t− tin), aP ' . nm s−2

No conventional explanation has been able to totally account for the anomaly.



Pioneer 10/11 anomalies

Independent analyses have confirmed the Pioneer anomaly
(J. Anderson et al., C Markwardt, O Olsen) and recently recovered data
(navigation and on board sensors) have been added to the analysis
(Pioneer Anomaly Investigation Team).

ODF for Pioneer 10 has been reanalysed with a dedicated software

   

A spectral analysis details
the periodic modulations
present in Doppler residuals

   

A. Levy et al.,
Advances in Space Research,
43 (2009) 1538

• modulated anomalies may signal a mismodeling of trajectories, ...
• or may provide additional hints on gravitation anomalies



Phenomenology in the solar system
Ranging on probes

Metric extensions of GR provide a framework which is well suited
for analysing gravitation tests performed in the solar system.
Light-like propagation is characterized by a time delay function

cT (r1, r2, φ) ≡
∫ r2

r1

− grr
g00

(r)dr√
− grr

g00
(r)− ρ2

r2

, φ =

∫ r2

r1

ρdr/r 2√
− grr

g00
(r)− ρ2

r2

The time delay function is parametrized by the potentials in the two sectors.
The second time derivative (or time derivative of the Doppler signal)
gives a difference with GR which appears as an anomalous acceleration

δa ' δasec + δamod

δasec ' −
c2

2
∂r (δg00) + [r2]st

{
δ(g00grr )

2
− δg00

}
− c2

2
∂2

r [g00]st δr2

δamod '
d
dt

{[
φ̇
]

st
δρ
}

The Pioneer-like anomaly has a secular part δasec and a modulated part
δamod. The secular and modulated anomalies are correlated.

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 7561



Planet ephemerides

Metric extensions of GR provide equations for light-cones and geodesics
which are parametrized by two functions (the potentials ΦN and ΦP ).

Expressions for the perihelion precessions of planets generalize those
obtained from PPN metrics

δ∆$

2π
' u (uδΦP)′′ − c2u

2GNM
δΦ′′N , (u =

1
r

)

+
e2u2

8

((
u2δΦ′′P + uδΦ′P

)′′
− c2u

2GNM
δΦ′′′′N

)
+ . . .

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 23 (2006) 777

Simple realistic models for the two potentials may be designed to provide
small sets of parameters to be tested in place of the usual PPN parameters.
The same parametrized functions can be used

• when analysing ranging and Doppler data obtained from probe tracking
• when fitting the parameters determining planet ephemerides.

Probe ranging and planet ephemerides provide sensitive probes for a scale
dependence of gravitation above the A.U scale.



Light deflection

Light deflection depends on a (conformal) combination of the two potentials

2δΦN(r)− δΦP(r) ≡ −G0M
c2r

+
M
c2 rζ0(r)

Comparing with the usual PPN framework, the second sector results in an
Eddington parameter γ which depends on the impact parameter ρ

δγ(ρ) =
2(G0 −GN)

GN
− ζ0(ρ)ρ2

GN

The deflection angle exhibits an anomalous dependence with respect to GR

δ∆θ ' −GNM
c2

∂

∂ρ

(
δγ(ρ)ln

4r1r2

ρ2

)
GR deflection angles increase with smaller impact parameters
but anomalies may increase with larger impact parameters.

Precise light deflection tests at large angles (GAIA) provide sensitive probes
for a scale dependence of gravitation below the A.U. scale.

M.-T. Jaekel, S. Reynaud, Class. Quantum Grav. 22 (2005) 2135



Conclusions

• General Relativity is well confirmed by present tests of gravity, except
possible anomalies in the outer part of the solar system.
Observations at larger scales however point at the necessity to test
gravitation more precisely and to look for potential scale dependences.
This is conforted by a theoretical analysis, which suggests a
parametrization of the vicinity of GR appropriate for analysing tests.

• Metric extensions of GR are parametrized by two gravitation potentials
which generalize the PPN parameters β, γ.
They provide the necessary parameters for studying scale dependences.
They can account for Pioneer-like anomalies and predict correlated
anomalies. These could be exhibited by further analyses of available
data or by experiments in future space missions.

• The usefulness of the extended famework is not limited to the solar
system. Although bound to remain small at this scale and mainly
significant in the second sector, modifications of GR may become more
important at larger scales and also affect the first sector.
As suggested by observations at galactic and cosmological scales.


