Observation of gravitational waves from binary black-hole merger

The only fundamental waves we have observed so far are electromagnetic waves – Maxwell's equations (light, radio, microwaves, gamma rays, x-rays)

So far, our **knowledge of the Universe** essentially comes from electromagnetic waves

Gravitational waves are the only other fundamental wave phenomena we know – Einstein's equations

Coalescence of two black holes (credits: SXS)

Outline

Primer on gravitational waves

Path to first detection: historical review

Interferometric detectors: from principles to sensitivity

Results from first aLIGO science run

Search summary Science beyond detection Multimessenger astronomy

Outlook

Einstein's General relativity

General relativity – 1915

- Spacetime is a deformable and dynamic object
- Gravity describes as a geometrical effect coming from spacetime curvature
- Einstein's fields equations

Space-time geometry

$$G_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$

Energy/ Matter

"spacetime tells matter how to move; matter tells spacetime how to curve"

John Archibald Wheeler

Gravitational waves

• Linearization of Einstein equations

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \quad |h_{\mu\nu}| \ll 1 \implies \Box \bar{h}_{\mu\nu} = 0$$

- Propagating perturbations of space-time metric
 - Travel at the speed of light
 - Tranverse waves
 - Two polarisations x and +
 - Dimensionless strain amplitude *h*

Gravitational waves

- Produced by accelerated mass
- Rapid changes in shape and orientation of massive systems
- Large masses, relativistic motion
 - → astrophysical sources
- Variation of the quadrupole
 - \rightarrow Inspiralling binaries of black holes and neutron stars

Evidence of existence

- Binary pulsar PSR B1913+16
 - Orbital decay \rightarrow energy loss due to GW
 - In agreement with GR to ~0.2 %
 - Hulse & Taylor's Nobel prize 1993

« for the discovery of a new type of pulsar, a discovery that has opened up new possibilites for the study of gravitation »

Binary orbit will continue to decay over 300 millions years until coalescence

R Hulse J Taylor

J Weisberg T Damour

Outline

Primer on gravitational waves

Path to first detection: historical review

Interferometric detectors: from principles to sensitivity

Results from first aLIGO science run

Search summary Science beyond detection Multimessenger astronomy

Outlook

History of direct detection (1)

History of direct detection (2)

Outline

Primer on gravitational waves

Path to first detection: historical review

Interferometric detectors: from principles to sensitivity

Results from first aLIGO science run

Search summary Science beyond detection Multimessenger astronomy

Outlook

Michelson interferometer

Advanced LIGO (1)

O1 science run sep 2015 – 4 months

Outline

Primer on gravitational waves

Path to first detection: historical review

Interferometric detectors: from principles to sensitivity

Results from first aLIGO science run

Search summary Science beyond detection Multimessenger astronomy

Outlook

Sep 14, 2015 09:50:45 UTC

Oct 12 2015 09:54:43 UTC

Likely merger of 23^{+18}_{-5} [M_{\odot} and 13^{+4}_{-5} [M_{\odot} black holes at 1100^{+500}_{-500} [Mpc]

Dec 26 2015 03:38:53 UTC

Merger of $14.2^{+8.3}_{-3.7}M_{\odot}$ and $7.5^{+2.3}_{-2.3}M_{\odot}$ black holes at 440^{+180}_{-190} Mpc

Phys. Rev. Lett. 116, 241103 (2016)

Chirps!

What did we search for?

Template from astrophysical model

- Characteristic chirp waveform
- Encodes system dynamics
 - Inspiral
 - Leading order: chirp mass
 - Next to leading order: mass ratio, spin (assumed aligned with orbital angular momentum)
 - Merger and ringdown
 - Governed by final black-hole mass and spin
- 11 parameters total
 - 4 mass and (aligned) spins, and geometrical params (no excentricity)

How did we search? Matched filtering

Correlate data with expected signal

Matched filtering: basic ideas (2)

Bank of chirp templates

- Detect **any signal** in a **space of possible signals** all with different phase evolution
- Do it with a **finite set of templates**!
- Make sure there is a "close" template for every part of the signal space
- Natural metric: correlation between neighboring templates → regular or random lattices of templates

250 000 templates covers BNS, NS-BH, BBH

Non-Gaussian noise – Glitches

Glitch rate ~ 1 per few seconds to 1 per 20 min

Signal consistency

Non-Gaussian artefacts (glitches) Waveform consistency

- χ^2_r test that checks consistency of spectral power distribution
 - Detection statistic

$$\hat{\rho} = \rho \left\{ \left[1 + (\chi_r^2)^3 \right] / 2 \right\}^{-1/6}$$

Coincident triggers in both detectors (time and mass/spins)

Statistical significance (1)

- What is the chance that this event is noise? (i.e., the event statistical significance)
 - Probability that glitches occur in coincidence at both detectors
 - Challenging to measure the experimental background
 - Non-Gaussian noise (glitches) is impossible to model
 - **Can't shield the detector** from gravitational wave!
 - Estimate background to high-significance (*p-value* < 10⁻⁶)
 For comparison: glitch occurrence ~1–10% of observation time

Empirical estimate from the data – resampling

- Data time-stamps are artificially shifted by an offset much larger than the inter-site propagation time
- Repeat this operation million times with different offsets

Statistical significance (2)

Probability that this event is due to background alone is $\sim 1/5~000~000$

16 days of observation \rightarrow less than 1 noise event per 203 000 years

Why are we confident in the detection?

- Event occurred in a normal/stable operation period
- Monitor instrument and environment constantly
 - 200 000 auxiliary channels
 - Seismometers, microphones, magnetometers, ...
 - Coupling measured between the instrument environment and *h(t)*
- Environmental origin for GW150914 ruled out
 - Excess power in any auxiliary channel too small by factor > 17 to account for GW150914
 - Would not match signal morphology anyway

How do we know this is a black hole binary?

Over 200 ms, **frequency and amplitude increase** from 35 to 150 Hz (~8 cycles)

- GW-driven of two orbiting masses
- Inspiral evolution characterized by chirp mass

$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}} = \frac{c^3}{G} \left[\frac{5}{96} \pi^{-8/3} f^{-11/3} \dot{f} \right]^3$$

 $\mathcal{M} \approx 30 M_{\odot}$ $M > 70 M_{\odot}$

Keplerian separation gets close to Schwarzschild radius

• BNS too light, NSBH would merge at lower frequencies

Decay of waveform after peak

- Consistent with damped oscillations of BH relaxing to final stationary Kerr configuration
- But SNR too low to claim observation of normal modes

 $R_S = 2GM/c^2 \ge 210 \text{ km}$

Beyond detection: Parameter estimation

Event	GW 150914	GW151226	LVT151012
Signal-to-noise ratio ρ	23.7	13.0	9.7
False alarm rate FAR/yr ⁻¹	$< 6.0 \times 10^{-7}$	$< 6.0 \times 10^{-7}$	0.37
p-value	$7.5 imes 10^{-8}$	$7.5 imes10^{-8}$	0.045
Significance	$> 5.3 \sigma$	$> 5.3 \sigma$	1.7σ
Primary mass $m_1^{\text{source}}/M_{\odot}$	$36.2^{+5.2}_{-3.8}$	$14.2^{+8.3}_{-3.7}$	23^{+18}_{-6}
Secondary mass $m_2^{\text{source}}/M_{\odot}$	$29.1^{+3.7}_{-4.4}$	$7.5^{+2.3}_{-2.3}$	13^{+4}_{-5}
Chirp mass $\mathcal{M}^{source}/M_{\odot}$	$28.1^{+1.8}_{-1.5}$	$8.9^{+0.3}_{-0.3}$	$15.1^{+1.4}_{-1.1}$
Total mass $M^{\text{source}}/M_{\odot}$	$65.3^{+4.1}_{-3.4}$	$21.8^{+5.9}_{-1.7}$	37^{+13}_{-4}
Effective inspiral spin $\chi_{\rm eff}$	$-0.06\substack{+0.14\\-0.14}$	$0.21\substack{+0.20\\-0.10}$	$0.0\substack{+0.3\\-0.2}$
Final mass $M_{ m f}^{ m source}/{ m M}_{\odot}$	$62.3^{+3.7}_{-3.1}$	$20.8^{+6.1}_{-1.7}$	35^{+14}_{-4}
Final spin a _f	$0.68^{+0.05}_{-0.06}$	$0.74^{+0.06}_{-0.06}$	$0.66^{+0.09}_{-0.10}$
Radiated energy $E_{rad}/(M_{\odot}c^2)$	$3.0^{+0.5}_{-0.4}$	$1.0^{+0.1}_{-0.2}$	$1.5\substack{+0.3\\-0.4}$
Peak luminosity $\ell_{peak}/(erg s^{-1})$	$3.6^{+0.5}_{-0.4} \times 10^{56}$	$3.3^{+0.8}_{-1.6} \times 10^{56}$	$3.1^{+0.8}_{-1.8} \times 10^{56}$
Luminosity distance DL/Mpc	420^{+150}_{-180}	440^{+180}_{-190}	1000^{+500}_{-500}
Source redshift z	$0.09^{+0.03}_{-0.04}$	$0.09^{+0.03}_{-0.04}$	$0.20^{+0.09}_{-0.09}$
Sky localization $\Delta\Omega/\text{deg}^2$	230	850	1600

~50 x more luminous than all the stars in the Universe!

Astrophysical implications

Reveals a yet unobserved population of heavy stellar-mass black holes (> 15 M_{sun}) Formation channel?

Tests of General Relativity

- Most relativistic binary pulsar known today
 - J0737-3039, orbital velocity: v/c \sim 2 x 10⁻³
- GW150914 and GW151226
 - Strong field, non linear, high velocity regime: v/c ~ 0.5
- No evidence for deviation from general relativity

Electromagnetic follow-up (1)

From time-delay, amplitude and phase ~600 square degrees – 3000 full moons!

Electromagnetic follow-up (2)

Electromagnetic follow-up (3)

25 teams of observers responded to the GW alert Multiwavelength: from radio to gamma-rays

T0+2 days

B. P. Abbott et al, Localization and broadband follow-up of the gravitational-wave transient GW150914. ApJL in press.

Electromagnetic follow-up (4)

Follow-up by conventional astronomical observatories

~25 observatories from radio waves (100 MHz) ... to gamma-rays (300 GeV)

No convincing counterpart has been found so far

Outline

Primer on gravitational waves

Path to first detection: historical review

Interferometric detectors: from principles to sensitivity

Results from first aLIGO science run

Search summary Science beyond detection Multimessenger astronomy

What next?

What next?

• Immediate future

- ~ O2 (starting in September for 6 months) Sensitivity $x \sim 3 - 10$ BBH?
- Virgo joining Better sky resolution
- 1 year

✓ O3 (2017-2018) – another x 2-3 – 10-100 BBH? BNS? NS-BH?

• 5 years

Kagra – LIGO India joining – (sub-)degree sky resolution!

- 10 years A+
 - Upgrade to advanced detector
- 15-20 years
 - \sim 3rd generation target: x 10 sensitivity
 - Observe the whole Universe in gravitational waves

ArXiv:1606.04856

image credit: LIGO/Leo Singer (Milky Way image: Axel Mellinger)

image credit: LIGO/Leo Singer (Milky Way image: Axel Mellinger)

Gravitational wave astronomy

Frequency / Hz

This is just the beginning!

MARS /

ISSN 0373-9339-Anderrei 7,80C - Dom: 8,70C - Tom 190028F - Allemagne 9,50C - Belgiquei 7,80C - Suisse 12CHF - Canada: 10,50Scan - Espagne 7,80C - Grècei 7,80C - Italie 7,80C Luxembourg 7,80C - Autriche 7,80C - Mayotlei 9,50C - Port Cont 1,780C - SPM: 8,50C - Maroc: 6584A - Tunisie 6,50Th0 - Zene CFA: apostera